设计三级整群随机试验来评估治疗效果的异质性。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-10-18 DOI:10.1093/biostatistics/kxac026
Fan Li, Xinyuan Chen, Zizhong Tian, Denise Esserman, Patrick J Heagerty, Rui Wang
{"title":"设计三级整群随机试验来评估治疗效果的异质性。","authors":"Fan Li, Xinyuan Chen, Zizhong Tian, Denise Esserman, Patrick J Heagerty, Rui Wang","doi":"10.1093/biostatistics/kxac026","DOIUrl":null,"url":null,"abstract":"<p><p>Cluster randomized trials often exhibit a three-level structure with participants nested in subclusters such as health care providers, and subclusters nested in clusters such as clinics. While the average treatment effect has been the primary focus in planning three-level randomized trials, interest is growing in understanding whether the treatment effect varies among prespecified patient subpopulations, such as those defined by demographics or baseline clinical characteristics. In this article, we derive novel analytical design formulas based on the asymptotic covariance matrix for powering confirmatory analyses of treatment effect heterogeneity in three-level trials, that are broadly applicable to the evaluation of cluster-level, subcluster-level, and participant-level effect modifiers and to designs where randomization can be carried out at any level. We characterize a nested exchangeable correlation structure for both the effect modifier and the outcome conditional on the effect modifier, and generate new insights from a study design perspective for conducting analyses of treatment effect heterogeneity based on a linear mixed analysis of covariance model. A simulation study is conducted to validate our new methods and two real-world trial examples are used for illustrations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583727/pdf/","citationCount":"9","resultStr":"{\"title\":\"Designing three-level cluster randomized trials to assess treatment effect heterogeneity.\",\"authors\":\"Fan Li, Xinyuan Chen, Zizhong Tian, Denise Esserman, Patrick J Heagerty, Rui Wang\",\"doi\":\"10.1093/biostatistics/kxac026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cluster randomized trials often exhibit a three-level structure with participants nested in subclusters such as health care providers, and subclusters nested in clusters such as clinics. While the average treatment effect has been the primary focus in planning three-level randomized trials, interest is growing in understanding whether the treatment effect varies among prespecified patient subpopulations, such as those defined by demographics or baseline clinical characteristics. In this article, we derive novel analytical design formulas based on the asymptotic covariance matrix for powering confirmatory analyses of treatment effect heterogeneity in three-level trials, that are broadly applicable to the evaluation of cluster-level, subcluster-level, and participant-level effect modifiers and to designs where randomization can be carried out at any level. We characterize a nested exchangeable correlation structure for both the effect modifier and the outcome conditional on the effect modifier, and generate new insights from a study design perspective for conducting analyses of treatment effect heterogeneity based on a linear mixed analysis of covariance model. A simulation study is conducted to validate our new methods and two real-world trial examples are used for illustrations.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583727/pdf/\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxac026\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxac026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

摘要

集群随机试验通常表现出三级结构,参与者嵌套在医疗保健提供者等亚集群中,亚集群嵌套在诊所等集群中。虽然平均治疗效果一直是规划三级随机试验的主要焦点,但人们越来越有兴趣了解治疗效果是否在预先指定的患者亚群中有所不同,例如由人口统计学或基线临床特征定义的亚群。在这篇文章中,我们推导了基于渐近协方差矩阵的新的分析设计公式,用于支持三级试验中治疗效果异质性的验证性分析,这些公式广泛适用于聚类水平、亚聚类水平和参与者水平的效果修饰语的评估,以及可以在任何水平上进行随机化的设计。我们为效果修饰语和以效果修饰语为条件的结果表征了嵌套的可交换相关性结构,并从研究设计的角度产生了新的见解,用于基于协方差模型的线性混合分析进行治疗效果异质性分析。进行了模拟研究以验证我们的新方法,并使用两个真实世界的试验示例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing three-level cluster randomized trials to assess treatment effect heterogeneity.

Cluster randomized trials often exhibit a three-level structure with participants nested in subclusters such as health care providers, and subclusters nested in clusters such as clinics. While the average treatment effect has been the primary focus in planning three-level randomized trials, interest is growing in understanding whether the treatment effect varies among prespecified patient subpopulations, such as those defined by demographics or baseline clinical characteristics. In this article, we derive novel analytical design formulas based on the asymptotic covariance matrix for powering confirmatory analyses of treatment effect heterogeneity in three-level trials, that are broadly applicable to the evaluation of cluster-level, subcluster-level, and participant-level effect modifiers and to designs where randomization can be carried out at any level. We characterize a nested exchangeable correlation structure for both the effect modifier and the outcome conditional on the effect modifier, and generate new insights from a study design perspective for conducting analyses of treatment effect heterogeneity based on a linear mixed analysis of covariance model. A simulation study is conducted to validate our new methods and two real-world trial examples are used for illustrations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1