{"title":"1型糖尿病低血糖预测算法:系统评价。","authors":"Stella Tsichlaki, Lefteris Koumakis, Manolis Tsiknakis","doi":"10.2196/34699","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetes is a chronic condition that necessitates regular monitoring and self-management of the patient's blood glucose levels. People with type 1 diabetes (T1D) can live a productive life if they receive proper diabetes care. Nonetheless, a loose glycemic control might increase the risk of developing hypoglycemia. This incident can occur because of a variety of causes, such as taking additional doses of insulin, skipping meals, or overexercising. Mainly, the symptoms of hypoglycemia range from mild dysphoria to more severe conditions, if not detected in a timely manner.</p><p><strong>Objective: </strong>In this review, we aimed to report on innovative detection techniques and tactics for identifying and preventing hypoglycemic episodes, focusing on T1D.</p><p><strong>Methods: </strong>A systematic literature search following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines was performed focusing on the PubMed, GoogleScholar, IEEEXplore, and ACM Digital Library to find articles on technologies related to hypoglycemia detection in patients with T1D.</p><p><strong>Results: </strong>The presented approaches have been used or devised to enhance blood glucose monitoring and boost its efficacy in forecasting future glucose levels, which could aid the prediction of future episodes of hypoglycemia. We detected 19 predictive models for hypoglycemia, specifically on T1D, using a wide range of algorithmic methodologies, spanning from statistics (1.9/19, 10%) to machine learning (9.88/19, 52%) and deep learning (7.22/19, 38%). The algorithms used most were the Kalman filtering and classification models (support vector machine, k-nearest neighbors, and random forests). The performance of the predictive models was found to be satisfactory overall, reaching accuracies between 70% and 99%, which proves that such technologies are capable of facilitating the prediction of T1D hypoglycemia.</p><p><strong>Conclusions: </strong>It is evident that continuous glucose monitoring can improve glucose control in diabetes; however, predictive models for hypo- and hyperglycemia using only mainstream noninvasive sensors such as wristbands and smartwatches are foreseen to be the next step for mobile health in T1D. Prospective studies are required to demonstrate the value of such models in real-life mobile health interventions.</p>","PeriodicalId":52371,"journal":{"name":"JMIR Diabetes","volume":"7 3","pages":"e34699"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353679/pdf/","citationCount":"3","resultStr":"{\"title\":\"Type 1 Diabetes Hypoglycemia Prediction Algorithms: Systematic Review.\",\"authors\":\"Stella Tsichlaki, Lefteris Koumakis, Manolis Tsiknakis\",\"doi\":\"10.2196/34699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Diabetes is a chronic condition that necessitates regular monitoring and self-management of the patient's blood glucose levels. People with type 1 diabetes (T1D) can live a productive life if they receive proper diabetes care. Nonetheless, a loose glycemic control might increase the risk of developing hypoglycemia. This incident can occur because of a variety of causes, such as taking additional doses of insulin, skipping meals, or overexercising. Mainly, the symptoms of hypoglycemia range from mild dysphoria to more severe conditions, if not detected in a timely manner.</p><p><strong>Objective: </strong>In this review, we aimed to report on innovative detection techniques and tactics for identifying and preventing hypoglycemic episodes, focusing on T1D.</p><p><strong>Methods: </strong>A systematic literature search following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines was performed focusing on the PubMed, GoogleScholar, IEEEXplore, and ACM Digital Library to find articles on technologies related to hypoglycemia detection in patients with T1D.</p><p><strong>Results: </strong>The presented approaches have been used or devised to enhance blood glucose monitoring and boost its efficacy in forecasting future glucose levels, which could aid the prediction of future episodes of hypoglycemia. We detected 19 predictive models for hypoglycemia, specifically on T1D, using a wide range of algorithmic methodologies, spanning from statistics (1.9/19, 10%) to machine learning (9.88/19, 52%) and deep learning (7.22/19, 38%). The algorithms used most were the Kalman filtering and classification models (support vector machine, k-nearest neighbors, and random forests). The performance of the predictive models was found to be satisfactory overall, reaching accuracies between 70% and 99%, which proves that such technologies are capable of facilitating the prediction of T1D hypoglycemia.</p><p><strong>Conclusions: </strong>It is evident that continuous glucose monitoring can improve glucose control in diabetes; however, predictive models for hypo- and hyperglycemia using only mainstream noninvasive sensors such as wristbands and smartwatches are foreseen to be the next step for mobile health in T1D. Prospective studies are required to demonstrate the value of such models in real-life mobile health interventions.</p>\",\"PeriodicalId\":52371,\"journal\":{\"name\":\"JMIR Diabetes\",\"volume\":\"7 3\",\"pages\":\"e34699\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353679/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Diabetes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/34699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/34699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Type 1 Diabetes Hypoglycemia Prediction Algorithms: Systematic Review.
Background: Diabetes is a chronic condition that necessitates regular monitoring and self-management of the patient's blood glucose levels. People with type 1 diabetes (T1D) can live a productive life if they receive proper diabetes care. Nonetheless, a loose glycemic control might increase the risk of developing hypoglycemia. This incident can occur because of a variety of causes, such as taking additional doses of insulin, skipping meals, or overexercising. Mainly, the symptoms of hypoglycemia range from mild dysphoria to more severe conditions, if not detected in a timely manner.
Objective: In this review, we aimed to report on innovative detection techniques and tactics for identifying and preventing hypoglycemic episodes, focusing on T1D.
Methods: A systematic literature search following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines was performed focusing on the PubMed, GoogleScholar, IEEEXplore, and ACM Digital Library to find articles on technologies related to hypoglycemia detection in patients with T1D.
Results: The presented approaches have been used or devised to enhance blood glucose monitoring and boost its efficacy in forecasting future glucose levels, which could aid the prediction of future episodes of hypoglycemia. We detected 19 predictive models for hypoglycemia, specifically on T1D, using a wide range of algorithmic methodologies, spanning from statistics (1.9/19, 10%) to machine learning (9.88/19, 52%) and deep learning (7.22/19, 38%). The algorithms used most were the Kalman filtering and classification models (support vector machine, k-nearest neighbors, and random forests). The performance of the predictive models was found to be satisfactory overall, reaching accuracies between 70% and 99%, which proves that such technologies are capable of facilitating the prediction of T1D hypoglycemia.
Conclusions: It is evident that continuous glucose monitoring can improve glucose control in diabetes; however, predictive models for hypo- and hyperglycemia using only mainstream noninvasive sensors such as wristbands and smartwatches are foreseen to be the next step for mobile health in T1D. Prospective studies are required to demonstrate the value of such models in real-life mobile health interventions.