用乐高积木拼凑补体:对免疫学课堂兴趣、信心和学习的影响。

Suzanne S Bohlson, Joshua J Baty, Mallary C Greenlee-Wacker, Heather A Bruns
{"title":"用乐高积木拼凑补体:对免疫学课堂兴趣、信心和学习的影响。","authors":"Suzanne S Bohlson,&nbsp;Joshua J Baty,&nbsp;Mallary C Greenlee-Wacker,&nbsp;Heather A Bruns","doi":"10.4049/immunohorizons.2200040","DOIUrl":null,"url":null,"abstract":"<p><p>Teaching and learning complex molecular cascades can often be challenging. In immunology, students struggle to visualize immunological processes, such as activation of the complement system, which involves three separate cascades leading to multiple effector functions. Offering learning activities that use tangible modeling can help students learn conceptually difficult content by fostering a visual understanding of concepts, as well as instill confidence and interest in the material. In this article, we describe a learning activity using LEGO bricks that demonstrates the activation of the classical, lectin, and alternative complement pathways and formation of the membrane attack complex. In both an introductory and advanced immunology course, we investigated the effect of the activity on student learning and subject confidence. Performance on examination questions about complement demonstrated that the LEGO activity improved learning in a naive student population (students in introductory immunology), but not in a previously informed student population (students in advanced immunology). In addition, self-reported confidence in the content was significantly higher in students who completed the LEGO activity in the advanced course, but not the introductory course, compared with those who did not do the activity. Students in both courses who did the activity had a positive perception of the activity, with a majority of students reporting that they enjoyed the activity and had more interest in the complement system.</p>","PeriodicalId":13448,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Piecing Complement Together with LEGO Bricks: Impacts on Interest, Confidence, and Learning in the Immunology Classroom.\",\"authors\":\"Suzanne S Bohlson,&nbsp;Joshua J Baty,&nbsp;Mallary C Greenlee-Wacker,&nbsp;Heather A Bruns\",\"doi\":\"10.4049/immunohorizons.2200040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Teaching and learning complex molecular cascades can often be challenging. In immunology, students struggle to visualize immunological processes, such as activation of the complement system, which involves three separate cascades leading to multiple effector functions. Offering learning activities that use tangible modeling can help students learn conceptually difficult content by fostering a visual understanding of concepts, as well as instill confidence and interest in the material. In this article, we describe a learning activity using LEGO bricks that demonstrates the activation of the classical, lectin, and alternative complement pathways and formation of the membrane attack complex. In both an introductory and advanced immunology course, we investigated the effect of the activity on student learning and subject confidence. Performance on examination questions about complement demonstrated that the LEGO activity improved learning in a naive student population (students in introductory immunology), but not in a previously informed student population (students in advanced immunology). In addition, self-reported confidence in the content was significantly higher in students who completed the LEGO activity in the advanced course, but not the introductory course, compared with those who did not do the activity. Students in both courses who did the activity had a positive perception of the activity, with a majority of students reporting that they enjoyed the activity and had more interest in the complement system.</p>\",\"PeriodicalId\":13448,\"journal\":{\"name\":\"ImmunoHorizons\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ImmunoHorizons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4049/immunohorizons.2200040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4049/immunohorizons.2200040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

教授和学习复杂的分子级联通常是具有挑战性的。在免疫学中,学生们努力将免疫过程可视化,例如补体系统的激活,它涉及三个独立的级联,导致多种效应功能。提供使用有形模型的学习活动可以帮助学生通过培养对概念的视觉理解来学习概念上困难的内容,以及灌输对材料的信心和兴趣。在这篇文章中,我们描述了一个使用乐高积木的学习活动,该活动展示了经典、凝集素和替代补体途径的激活以及膜攻击复合物的形成。在免疫学入门和高级课程中,我们调查了该活动对学生学习和学科信心的影响。在补体测试问题上的表现表明,乐高活动改善了初级学生群体(免疫学入门学生)的学习,但在先前知情的学生群体(高级免疫学学生)中没有改善。此外,在高级课程中完成乐高活动而在入门课程中没有完成乐高活动的学生,与没有完成乐高活动的学生相比,对乐高内容的自我报告信心明显更高。参加这两门课程活动的学生对活动都有积极的看法,大多数学生报告说他们喜欢这个活动,对补体系统更感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Piecing Complement Together with LEGO Bricks: Impacts on Interest, Confidence, and Learning in the Immunology Classroom.

Teaching and learning complex molecular cascades can often be challenging. In immunology, students struggle to visualize immunological processes, such as activation of the complement system, which involves three separate cascades leading to multiple effector functions. Offering learning activities that use tangible modeling can help students learn conceptually difficult content by fostering a visual understanding of concepts, as well as instill confidence and interest in the material. In this article, we describe a learning activity using LEGO bricks that demonstrates the activation of the classical, lectin, and alternative complement pathways and formation of the membrane attack complex. In both an introductory and advanced immunology course, we investigated the effect of the activity on student learning and subject confidence. Performance on examination questions about complement demonstrated that the LEGO activity improved learning in a naive student population (students in introductory immunology), but not in a previously informed student population (students in advanced immunology). In addition, self-reported confidence in the content was significantly higher in students who completed the LEGO activity in the advanced course, but not the introductory course, compared with those who did not do the activity. Students in both courses who did the activity had a positive perception of the activity, with a majority of students reporting that they enjoyed the activity and had more interest in the complement system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Patients on the Transplant Waiting List Have Anti-Swine Leukocyte Antigen Class I Antibodies. Acute Respiratory Illness Is Associated with Memory T Cell Differentiation and Other Immune Cell Changes in an Age-Associated Manner. Sequential Early-Life Infections Alter Peripheral Blood Transcriptomics in Aging Female Mice but Not the Response to De Novo Infection with Influenza Virus or M. tuberculosis. Disease in the Pld4thss/thss Model of Murine Lupus Requires TLR9. Diplomate in Medical Laboratory Immunology Certification Examination: A New Chapter for Medical Laboratory Immunology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1