从马来西亚沙巴分离的首个高致病性H5N1 2.32.1 c禽流感病毒血凝素和神经氨酸酶基因的分子特征

IF 0.8 4区 医学 Q4 PARASITOLOGY Tropical biomedicine Pub Date : 2022-06-01 DOI:10.47665/tb.39.2.001
B L Leow, S Syamsiah Aini, M Y Faizul Fikri, S Muhammad Redzwan, G H Ong, M S Faizah Hanim
{"title":"从马来西亚沙巴分离的首个高致病性H5N1 2.32.1 c禽流感病毒血凝素和神经氨酸酶基因的分子特征","authors":"B L Leow,&nbsp;S Syamsiah Aini,&nbsp;M Y Faizul Fikri,&nbsp;S Muhammad Redzwan,&nbsp;G H Ong,&nbsp;M S Faizah Hanim","doi":"10.47665/tb.39.2.001","DOIUrl":null,"url":null,"abstract":"<p><p>Highly Pathogenic Avian Influenza (HPAI) is a highly contagious disease in poultry. The outbreaks can lead to flock mortality up to 100% in two to three days. In July 2018, high mortality in a commercial layer farm in Kauluan village, Sabah was reported. Samples were sent to Veterinary Research Institute Ipoh for diagnosis. Virus isolation and molecular detection is carried out simultaneously. The causative agent was then identified as AI H5N1 virus by real time reverse transcription-polymerase chain reaction (RT-PCR). The virus was then subjected for further nucleotide sequencing of full length hemagglutinin (HA) and neuraminidase (NA) gene. The PQRERRRKR/GLF motif at the HA cleavage site indicated that the isolate was of HPAI virus. Phylogenetic analysis of the HA gene showed that the isolate was belonged to the clade 2.3.2.1c virus. In the HA gene, besides the S133A substitution, the virus possesses conserved amino acid at most of the avian receptor binding sites including the glutamine (Q) and glycine (G) at position 222 and 224 respectively, indicating that the virus retains the avian-type receptor binding preference. As such, the zoonotic potential of the virus was relatively low. On the other hand, though the N154D and T156A substitution were detected in the same gene, the pandemic potential of this Sabah 2.3.2.1c virus is low in the absence of the Q222L, G224S, H103Y, N220K and T315I. A typical 20 amino acid deletion with loss of four corresponding glycosylation sites in the NA stalk region was visible. Though three NA resistance markers were detected, the virus was predicted to be sensitive to NA inhibitor. This is the first HPAI H5N1 outbreak in Sabah. The introduction of this virus into East Malaysia for the first time raised an alert alarm of the future epidemic potential. Strict farm biosecurity, continuous surveillance programme in poultry, wild birds, migratory birds; molecular epidemiology as well as risk assessment for the virus with pandemic potential are needed in dealing with emergence of new influenza virus in the country.</p>","PeriodicalId":23476,"journal":{"name":"Tropical biomedicine","volume":"39 2","pages":"160-169"},"PeriodicalIF":0.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Molecular characterisation of hemagglutinin and neuraminidase genes of the first highly pathogenic Avian Influenza H5N1 2.3.2.1c virus isolated from Sabah, Malaysia.\",\"authors\":\"B L Leow,&nbsp;S Syamsiah Aini,&nbsp;M Y Faizul Fikri,&nbsp;S Muhammad Redzwan,&nbsp;G H Ong,&nbsp;M S Faizah Hanim\",\"doi\":\"10.47665/tb.39.2.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Highly Pathogenic Avian Influenza (HPAI) is a highly contagious disease in poultry. The outbreaks can lead to flock mortality up to 100% in two to three days. In July 2018, high mortality in a commercial layer farm in Kauluan village, Sabah was reported. Samples were sent to Veterinary Research Institute Ipoh for diagnosis. Virus isolation and molecular detection is carried out simultaneously. The causative agent was then identified as AI H5N1 virus by real time reverse transcription-polymerase chain reaction (RT-PCR). The virus was then subjected for further nucleotide sequencing of full length hemagglutinin (HA) and neuraminidase (NA) gene. The PQRERRRKR/GLF motif at the HA cleavage site indicated that the isolate was of HPAI virus. Phylogenetic analysis of the HA gene showed that the isolate was belonged to the clade 2.3.2.1c virus. In the HA gene, besides the S133A substitution, the virus possesses conserved amino acid at most of the avian receptor binding sites including the glutamine (Q) and glycine (G) at position 222 and 224 respectively, indicating that the virus retains the avian-type receptor binding preference. As such, the zoonotic potential of the virus was relatively low. On the other hand, though the N154D and T156A substitution were detected in the same gene, the pandemic potential of this Sabah 2.3.2.1c virus is low in the absence of the Q222L, G224S, H103Y, N220K and T315I. A typical 20 amino acid deletion with loss of four corresponding glycosylation sites in the NA stalk region was visible. Though three NA resistance markers were detected, the virus was predicted to be sensitive to NA inhibitor. This is the first HPAI H5N1 outbreak in Sabah. The introduction of this virus into East Malaysia for the first time raised an alert alarm of the future epidemic potential. Strict farm biosecurity, continuous surveillance programme in poultry, wild birds, migratory birds; molecular epidemiology as well as risk assessment for the virus with pandemic potential are needed in dealing with emergence of new influenza virus in the country.</p>\",\"PeriodicalId\":23476,\"journal\":{\"name\":\"Tropical biomedicine\",\"volume\":\"39 2\",\"pages\":\"160-169\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.47665/tb.39.2.001\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.47665/tb.39.2.001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

高致病性禽流感(HPAI)是一种禽类高度传染性疾病。疫情可导致禽群在两到三天内死亡率高达100%。2018年7月,沙巴州Kauluan村的一个商业蛋鸡养殖场报告了高死亡率。样本被送往怡保兽医研究所进行诊断。病毒分离和分子检测同时进行。然后通过实时逆转录聚合酶链反应(RT-PCR)鉴定病原体为H5N1禽流感病毒。然后对病毒进行进一步的全长血凝素(HA)和神经氨酸酶(NA)基因的核苷酸测序。HA裂解位点的PQRERRRKR/GLF基序表明分离物为高致病性禽流感病毒。HA基因的系统发育分析表明该分离物属于2.3.2.1c进化支病毒。在HA基因中,除S133A取代外,病毒在大多数禽类受体结合位点上都有保守的氨基酸,其中谷氨酰胺(Q)和甘氨酸(G)分别位于222位和224位,表明病毒保留了禽类型受体结合偏好。因此,该病毒发生人畜共患的可能性相对较低。另一方面,虽然在同一基因中检测到N154D和T156A的替换,但在缺乏Q222L、G224S、H103Y、N220K和T315I的情况下,该沙巴2.3.2.1c病毒的大流行潜力较低。典型的20个氨基酸缺失和NA茎区4个相应糖基化位点的丢失是可见的。虽然检测到三种NA抗性标记,但预测病毒对NA抑制剂敏感。这是沙巴第一次高致病性H5N1疫情。该病毒首次传入东马来西亚,对未来的流行潜力发出了警报。严格的农场生物安全,持续监测家禽、野鸟、候鸟;在处理该国出现的新流感病毒时,需要对具有大流行潜力的病毒进行分子流行病学和风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular characterisation of hemagglutinin and neuraminidase genes of the first highly pathogenic Avian Influenza H5N1 2.3.2.1c virus isolated from Sabah, Malaysia.

Highly Pathogenic Avian Influenza (HPAI) is a highly contagious disease in poultry. The outbreaks can lead to flock mortality up to 100% in two to three days. In July 2018, high mortality in a commercial layer farm in Kauluan village, Sabah was reported. Samples were sent to Veterinary Research Institute Ipoh for diagnosis. Virus isolation and molecular detection is carried out simultaneously. The causative agent was then identified as AI H5N1 virus by real time reverse transcription-polymerase chain reaction (RT-PCR). The virus was then subjected for further nucleotide sequencing of full length hemagglutinin (HA) and neuraminidase (NA) gene. The PQRERRRKR/GLF motif at the HA cleavage site indicated that the isolate was of HPAI virus. Phylogenetic analysis of the HA gene showed that the isolate was belonged to the clade 2.3.2.1c virus. In the HA gene, besides the S133A substitution, the virus possesses conserved amino acid at most of the avian receptor binding sites including the glutamine (Q) and glycine (G) at position 222 and 224 respectively, indicating that the virus retains the avian-type receptor binding preference. As such, the zoonotic potential of the virus was relatively low. On the other hand, though the N154D and T156A substitution were detected in the same gene, the pandemic potential of this Sabah 2.3.2.1c virus is low in the absence of the Q222L, G224S, H103Y, N220K and T315I. A typical 20 amino acid deletion with loss of four corresponding glycosylation sites in the NA stalk region was visible. Though three NA resistance markers were detected, the virus was predicted to be sensitive to NA inhibitor. This is the first HPAI H5N1 outbreak in Sabah. The introduction of this virus into East Malaysia for the first time raised an alert alarm of the future epidemic potential. Strict farm biosecurity, continuous surveillance programme in poultry, wild birds, migratory birds; molecular epidemiology as well as risk assessment for the virus with pandemic potential are needed in dealing with emergence of new influenza virus in the country.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical biomedicine
Tropical biomedicine 医学-寄生虫学
CiteScore
1.60
自引率
0.00%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Society publishes the Journal – Tropical Biomedicine, 4 issues yearly. It was first started in 1984. The journal is now abstracted / indexed by Medline, ISI Thompson, CAB International, Zoological Abstracts, SCOPUS. It is available free on the MSPTM website. Members may submit articles on Parasitology, Tropical Medicine and other related subjects for publication in the journal subject to scrutiny by referees. There is a charge of US$200 per manuscript. However, charges will be waived if the first author or corresponding author are members of MSPTM of at least three (3) years'' standing.
期刊最新文献
Antimicrobial activity of essential oils of Curcuma longa and Syzygium aromaticum against multiple drug-resistant pathogenic bacteria. Molecular characterization and phylogenetic analysis of avian influenza H3N8 virus isolated from imported waterfowl in Malaysia. Antibiosis interaction of black soldier flies (Hermetia illucens) (Diptera: Stratiomyidae) with house fly (Musca domestica) (Diptera: Muscidae). An automated malaria cells detection from thin blood smear images using deep learning. Antileishmanial effects, cellular mechanisms, and cytotoxicity of Elettaria cardamomum essential oil against Leishmania major infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1