{"title":"非经典单核细胞有助于牛的先天免疫训练。","authors":"Lisa-Marie Schünemann, Hans-Joachim Schuberth","doi":"10.1177/17534259221114219","DOIUrl":null,"url":null,"abstract":"<p><p>Innate immune training is defined as a property of innate immune cells to react stronger to a secondary contact with pathogens. Induction of innate immune training has been reported for a variety of pathogens and selected pattern recognition receptor-ligands, such as β-glucans (βG). We examined whether <i>Saccharomyces cerevisiae</i> cell wall component βG induces training in bovine monocytes <i>in vitro</i> based on a heightened TNF secretion after stimulation by trained monocyte-derived macrophages with <i>Escherichia coli</i> LPS. Sorted CD14-expressing monocytes (classical and intermediate monocytes), as well as single populations of sorted classical, intermediate and non-classical monocytes could not be trained by βG, whereas macrophages derived from plastic-adherent mononuclear cell preparations displayed features of a trained function. The hypothesis, that non-classical monocytes need to be present in a mixed monocyte population in order to be trained by βG could be verified by a successful training of positively sorted whole monocyte populations (CD14CD16/M) containing all three monocyte subpopulations. The trainability depended on conditions favoring M1 polarization of macrophages. Altogether, innate immune training of bovine monocytes seems to depend on the presence of non-classical monocytes. This adds new information to the role of this monocyte subpopulation in the bovine immune system.</p>","PeriodicalId":13676,"journal":{"name":"Innate Immunity","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7d/05/10.1177_17534259221114219.PMC9389050.pdf","citationCount":"2","resultStr":"{\"title\":\"Non-classical monocytes contribute to innate immune training in cattle.\",\"authors\":\"Lisa-Marie Schünemann, Hans-Joachim Schuberth\",\"doi\":\"10.1177/17534259221114219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Innate immune training is defined as a property of innate immune cells to react stronger to a secondary contact with pathogens. Induction of innate immune training has been reported for a variety of pathogens and selected pattern recognition receptor-ligands, such as β-glucans (βG). We examined whether <i>Saccharomyces cerevisiae</i> cell wall component βG induces training in bovine monocytes <i>in vitro</i> based on a heightened TNF secretion after stimulation by trained monocyte-derived macrophages with <i>Escherichia coli</i> LPS. Sorted CD14-expressing monocytes (classical and intermediate monocytes), as well as single populations of sorted classical, intermediate and non-classical monocytes could not be trained by βG, whereas macrophages derived from plastic-adherent mononuclear cell preparations displayed features of a trained function. The hypothesis, that non-classical monocytes need to be present in a mixed monocyte population in order to be trained by βG could be verified by a successful training of positively sorted whole monocyte populations (CD14CD16/M) containing all three monocyte subpopulations. The trainability depended on conditions favoring M1 polarization of macrophages. Altogether, innate immune training of bovine monocytes seems to depend on the presence of non-classical monocytes. This adds new information to the role of this monocyte subpopulation in the bovine immune system.</p>\",\"PeriodicalId\":13676,\"journal\":{\"name\":\"Innate Immunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7d/05/10.1177_17534259221114219.PMC9389050.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innate Immunity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/17534259221114219\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innate Immunity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/17534259221114219","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Non-classical monocytes contribute to innate immune training in cattle.
Innate immune training is defined as a property of innate immune cells to react stronger to a secondary contact with pathogens. Induction of innate immune training has been reported for a variety of pathogens and selected pattern recognition receptor-ligands, such as β-glucans (βG). We examined whether Saccharomyces cerevisiae cell wall component βG induces training in bovine monocytes in vitro based on a heightened TNF secretion after stimulation by trained monocyte-derived macrophages with Escherichia coli LPS. Sorted CD14-expressing monocytes (classical and intermediate monocytes), as well as single populations of sorted classical, intermediate and non-classical monocytes could not be trained by βG, whereas macrophages derived from plastic-adherent mononuclear cell preparations displayed features of a trained function. The hypothesis, that non-classical monocytes need to be present in a mixed monocyte population in order to be trained by βG could be verified by a successful training of positively sorted whole monocyte populations (CD14CD16/M) containing all three monocyte subpopulations. The trainability depended on conditions favoring M1 polarization of macrophages. Altogether, innate immune training of bovine monocytes seems to depend on the presence of non-classical monocytes. This adds new information to the role of this monocyte subpopulation in the bovine immune system.
期刊介绍:
Innate Immunity is a highly ranked, peer-reviewed scholarly journal and is the official journal of the International Endotoxin & Innate Immunity Society (IEIIS). The journal welcomes manuscripts from researchers actively working on all aspects of innate immunity including biologically active bacterial, viral, fungal, parasitic, and plant components, as well as relevant cells, their receptors, signaling pathways, and induced mediators. The aim of the Journal is to provide a single, interdisciplinary forum for the dissemination of new information on innate immunity in humans, animals, and plants to researchers. The Journal creates a vehicle for the publication of articles encompassing all areas of research, basic, applied, and clinical. The subject areas of interest include, but are not limited to, research in biochemistry, biophysics, cell biology, chemistry, clinical medicine, immunology, infectious disease, microbiology, molecular biology, and pharmacology.