Melissa Cravero, Aaron J Robinson, Patrick Hilpisch, Patrick S Chain, Saskia Bindschedler, Pilar Junier
{"title":"适当的基因组信息对设计交配型引物的重要性。","authors":"Melissa Cravero, Aaron J Robinson, Patrick Hilpisch, Patrick S Chain, Saskia Bindschedler, Pilar Junier","doi":"10.1186/s43008-022-00101-6","DOIUrl":null,"url":null,"abstract":"<p><p>Morels are highly prized edible fungi where sexual reproduction is essential for fruiting-body production. As a result, a comprehensive understanding of their sexual reproduction is of great interest. Central to this is the identification of the reproductive strategies used by morels. Sexual reproduction in fungi is controlled by mating-type (MAT) genes and morels are thought to be mainly heterothallic with two idiomorphs, MAT1-1 and MAT1-2. Genomic sequencing of black (Elata clade) and yellow (Esculenta clade) morel species has led to the development of PCR primers designed to amplify genes from the two idiomorphs for rapid genotyping of isolates from these two clades. To evaluate the design and theoretical performance of these primers we performed a thorough bioinformatic investigation, including the detection of the MAT region in publicly available Morchella genomes and in-silico PCR analyses. All examined genomes, including those used for primer design, appeared to be heterothallic. This indicates an inherent fault in the original primer design which utilized a single Morchella genome, as the use of two genomes with complementary mating types would be required to design accurate primers for both idiomorphs. Furthermore, potential off-targets were identified for some of the previously published primer sets, but verification was challenging due to lack of adequate genomic information and detailed methodologies for primer design. Examinations of the black morel specific primer pairs (MAT11L/R and MAT22L/R) indicated the MAT22 primers would correctly target and amplify the MAT1-2 idiomorph, but the MAT11 primers appear to be capable of amplifying incorrect off-targets within the genome. The yellow morel primer pairs (EMAT1-1 L/R and EMAT1-2 L/R) appear to have reporting errors, as the published primer sequences are dissimilar with reported amplicon sequences and the EMAT1-2 primers appear to amplify the RNA polymerase II subunit (RPB2) gene. The lack of the reference genome used in primer design and descriptive methodology made it challenging to fully assess the apparent issues with the primers for this clade. In conclusion, additional work is still required for the generation of reliable primers to investigate mating types in morels and to assess their performance on different clades and across multiple geographical regions.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394083/pdf/","citationCount":"0","resultStr":"{\"title\":\"Importance of appropriate genome information for the design of mating type primers in black and yellow morel populations.\",\"authors\":\"Melissa Cravero, Aaron J Robinson, Patrick Hilpisch, Patrick S Chain, Saskia Bindschedler, Pilar Junier\",\"doi\":\"10.1186/s43008-022-00101-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Morels are highly prized edible fungi where sexual reproduction is essential for fruiting-body production. As a result, a comprehensive understanding of their sexual reproduction is of great interest. Central to this is the identification of the reproductive strategies used by morels. Sexual reproduction in fungi is controlled by mating-type (MAT) genes and morels are thought to be mainly heterothallic with two idiomorphs, MAT1-1 and MAT1-2. Genomic sequencing of black (Elata clade) and yellow (Esculenta clade) morel species has led to the development of PCR primers designed to amplify genes from the two idiomorphs for rapid genotyping of isolates from these two clades. To evaluate the design and theoretical performance of these primers we performed a thorough bioinformatic investigation, including the detection of the MAT region in publicly available Morchella genomes and in-silico PCR analyses. All examined genomes, including those used for primer design, appeared to be heterothallic. This indicates an inherent fault in the original primer design which utilized a single Morchella genome, as the use of two genomes with complementary mating types would be required to design accurate primers for both idiomorphs. Furthermore, potential off-targets were identified for some of the previously published primer sets, but verification was challenging due to lack of adequate genomic information and detailed methodologies for primer design. Examinations of the black morel specific primer pairs (MAT11L/R and MAT22L/R) indicated the MAT22 primers would correctly target and amplify the MAT1-2 idiomorph, but the MAT11 primers appear to be capable of amplifying incorrect off-targets within the genome. The yellow morel primer pairs (EMAT1-1 L/R and EMAT1-2 L/R) appear to have reporting errors, as the published primer sequences are dissimilar with reported amplicon sequences and the EMAT1-2 primers appear to amplify the RNA polymerase II subunit (RPB2) gene. The lack of the reference genome used in primer design and descriptive methodology made it challenging to fully assess the apparent issues with the primers for this clade. In conclusion, additional work is still required for the generation of reliable primers to investigate mating types in morels and to assess their performance on different clades and across multiple geographical regions.</p>\",\"PeriodicalId\":54345,\"journal\":{\"name\":\"Ima Fungus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394083/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ima Fungus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s43008-022-00101-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ima Fungus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s43008-022-00101-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
Importance of appropriate genome information for the design of mating type primers in black and yellow morel populations.
Morels are highly prized edible fungi where sexual reproduction is essential for fruiting-body production. As a result, a comprehensive understanding of their sexual reproduction is of great interest. Central to this is the identification of the reproductive strategies used by morels. Sexual reproduction in fungi is controlled by mating-type (MAT) genes and morels are thought to be mainly heterothallic with two idiomorphs, MAT1-1 and MAT1-2. Genomic sequencing of black (Elata clade) and yellow (Esculenta clade) morel species has led to the development of PCR primers designed to amplify genes from the two idiomorphs for rapid genotyping of isolates from these two clades. To evaluate the design and theoretical performance of these primers we performed a thorough bioinformatic investigation, including the detection of the MAT region in publicly available Morchella genomes and in-silico PCR analyses. All examined genomes, including those used for primer design, appeared to be heterothallic. This indicates an inherent fault in the original primer design which utilized a single Morchella genome, as the use of two genomes with complementary mating types would be required to design accurate primers for both idiomorphs. Furthermore, potential off-targets were identified for some of the previously published primer sets, but verification was challenging due to lack of adequate genomic information and detailed methodologies for primer design. Examinations of the black morel specific primer pairs (MAT11L/R and MAT22L/R) indicated the MAT22 primers would correctly target and amplify the MAT1-2 idiomorph, but the MAT11 primers appear to be capable of amplifying incorrect off-targets within the genome. The yellow morel primer pairs (EMAT1-1 L/R and EMAT1-2 L/R) appear to have reporting errors, as the published primer sequences are dissimilar with reported amplicon sequences and the EMAT1-2 primers appear to amplify the RNA polymerase II subunit (RPB2) gene. The lack of the reference genome used in primer design and descriptive methodology made it challenging to fully assess the apparent issues with the primers for this clade. In conclusion, additional work is still required for the generation of reliable primers to investigate mating types in morels and to assess their performance on different clades and across multiple geographical regions.
Ima FungusAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
11.00
自引率
3.70%
发文量
18
审稿时长
20 weeks
期刊介绍:
The flagship journal of the International Mycological Association. IMA Fungus is an international, peer-reviewed, open-access, full colour, fast-track journal. Papers on any aspect of mycology are considered, and published on-line with final pagination after proofs have been corrected; they are then effectively published under the International Code of Nomenclature for algae, fungi, and plants. The journal strongly supports good practice policies, and requires voucher specimens or cultures to be deposited in a public collection with an online database, DNA sequences in GenBank, alignments in TreeBASE, and validating information on new scientific names, including typifications, to be lodged in MycoBank. News, meeting reports, personalia, research news, correspondence, book news, and information on forthcoming international meetings are included in each issue