适当的基因组信息对设计交配型引物的重要性。

IF 5.2 1区 生物学 Q1 MYCOLOGY Ima Fungus Pub Date : 2022-08-22 DOI:10.1186/s43008-022-00101-6
Melissa Cravero, Aaron J Robinson, Patrick Hilpisch, Patrick S Chain, Saskia Bindschedler, Pilar Junier
{"title":"适当的基因组信息对设计交配型引物的重要性。","authors":"Melissa Cravero,&nbsp;Aaron J Robinson,&nbsp;Patrick Hilpisch,&nbsp;Patrick S Chain,&nbsp;Saskia Bindschedler,&nbsp;Pilar Junier","doi":"10.1186/s43008-022-00101-6","DOIUrl":null,"url":null,"abstract":"<p><p>Morels are highly prized edible fungi where sexual reproduction is essential for fruiting-body production. As a result, a comprehensive understanding of their sexual reproduction is of great interest. Central to this is the identification of the reproductive strategies used by morels. Sexual reproduction in fungi is controlled by mating-type (MAT) genes and morels are thought to be mainly heterothallic with two idiomorphs, MAT1-1 and MAT1-2. Genomic sequencing of black (Elata clade) and yellow (Esculenta clade) morel species has led to the development of PCR primers designed to amplify genes from the two idiomorphs for rapid genotyping of isolates from these two clades. To evaluate the design and theoretical performance of these primers we performed a thorough bioinformatic investigation, including the detection of the MAT region in publicly available Morchella genomes and in-silico PCR analyses. All examined genomes, including those used for primer design, appeared to be heterothallic. This indicates an inherent fault in the original primer design which utilized a single Morchella genome, as the use of two genomes with complementary mating types would be required to design accurate primers for both idiomorphs. Furthermore, potential off-targets were identified for some of the previously published primer sets, but verification was challenging due to lack of adequate genomic information and detailed methodologies for primer design. Examinations of the black morel specific primer pairs (MAT11L/R and MAT22L/R) indicated the MAT22 primers would correctly target and amplify the MAT1-2 idiomorph, but the MAT11 primers appear to be capable of amplifying incorrect off-targets within the genome. The yellow morel primer pairs (EMAT1-1 L/R and EMAT1-2 L/R) appear to have reporting errors, as the published primer sequences are dissimilar with reported amplicon sequences and the EMAT1-2 primers appear to amplify the RNA polymerase II subunit (RPB2) gene. The lack of the reference genome used in primer design and descriptive methodology made it challenging to fully assess the apparent issues with the primers for this clade. In conclusion, additional work is still required for the generation of reliable primers to investigate mating types in morels and to assess their performance on different clades and across multiple geographical regions.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394083/pdf/","citationCount":"0","resultStr":"{\"title\":\"Importance of appropriate genome information for the design of mating type primers in black and yellow morel populations.\",\"authors\":\"Melissa Cravero,&nbsp;Aaron J Robinson,&nbsp;Patrick Hilpisch,&nbsp;Patrick S Chain,&nbsp;Saskia Bindschedler,&nbsp;Pilar Junier\",\"doi\":\"10.1186/s43008-022-00101-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Morels are highly prized edible fungi where sexual reproduction is essential for fruiting-body production. As a result, a comprehensive understanding of their sexual reproduction is of great interest. Central to this is the identification of the reproductive strategies used by morels. Sexual reproduction in fungi is controlled by mating-type (MAT) genes and morels are thought to be mainly heterothallic with two idiomorphs, MAT1-1 and MAT1-2. Genomic sequencing of black (Elata clade) and yellow (Esculenta clade) morel species has led to the development of PCR primers designed to amplify genes from the two idiomorphs for rapid genotyping of isolates from these two clades. To evaluate the design and theoretical performance of these primers we performed a thorough bioinformatic investigation, including the detection of the MAT region in publicly available Morchella genomes and in-silico PCR analyses. All examined genomes, including those used for primer design, appeared to be heterothallic. This indicates an inherent fault in the original primer design which utilized a single Morchella genome, as the use of two genomes with complementary mating types would be required to design accurate primers for both idiomorphs. Furthermore, potential off-targets were identified for some of the previously published primer sets, but verification was challenging due to lack of adequate genomic information and detailed methodologies for primer design. Examinations of the black morel specific primer pairs (MAT11L/R and MAT22L/R) indicated the MAT22 primers would correctly target and amplify the MAT1-2 idiomorph, but the MAT11 primers appear to be capable of amplifying incorrect off-targets within the genome. The yellow morel primer pairs (EMAT1-1 L/R and EMAT1-2 L/R) appear to have reporting errors, as the published primer sequences are dissimilar with reported amplicon sequences and the EMAT1-2 primers appear to amplify the RNA polymerase II subunit (RPB2) gene. The lack of the reference genome used in primer design and descriptive methodology made it challenging to fully assess the apparent issues with the primers for this clade. In conclusion, additional work is still required for the generation of reliable primers to investigate mating types in morels and to assess their performance on different clades and across multiple geographical regions.</p>\",\"PeriodicalId\":54345,\"journal\":{\"name\":\"Ima Fungus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394083/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ima Fungus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s43008-022-00101-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ima Fungus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s43008-022-00101-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

羊肚菌是一种非常珍贵的食用菌,其有性繁殖对子实体的产生至关重要。因此,全面了解它们的有性生殖是很有意义的。研究的核心是确定羊肚菌使用的繁殖策略。真菌的有性生殖是由交配型(MAT1-1)基因控制的,霉菌被认为主要是异thallic,有两个自胚,MAT1-1和MAT1-2。对黑色(Elata进化支)和黄色(Esculenta进化支)morel物种的基因组测序导致了PCR引物的开发,旨在扩增两种自形的基因,用于快速分型这两个进化支的分离物。为了评估这些引物的设计和理论性能,我们进行了彻底的生物信息学研究,包括在公开可用的羊肠菌基因组中检测MAT区域和计算机PCR分析。所有被检测的基因组,包括那些用于引物设计的基因组,似乎都是异源性的。这表明原始引物设计中存在固有的缺陷,即使用单个羊肚菌基因组,因为使用具有互补交配类型的两个基因组将需要为两个自胚设计准确的引物。此外,一些先前发表的引物集被确定为潜在的脱靶,但由于缺乏足够的基因组信息和引物设计的详细方法,验证是具有挑战性的。对黑痣特异性引物对(MAT11L/R和MAT22L/R)的检测表明,MAT22引物能够正确地靶向和扩增MAT1-2二形态,但MAT11引物似乎能够扩增基因组内不正确的非靶标。黄色鼹鼠引物对(EMAT1-1 L/R和EMAT1-2 L/R)似乎存在报告错误,因为已发表的引物序列与报道的扩增子序列不同,并且EMAT1-2引物似乎扩增RNA聚合酶II亚基(RPB2)基因。缺乏用于引物设计和描述方法的参考基因组使得充分评估该分支引物的明显问题具有挑战性。总之,为了研究鼹鼠交配类型并评估它们在不同枝系和不同地理区域的表现,还需要进行更多的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Importance of appropriate genome information for the design of mating type primers in black and yellow morel populations.

Morels are highly prized edible fungi where sexual reproduction is essential for fruiting-body production. As a result, a comprehensive understanding of their sexual reproduction is of great interest. Central to this is the identification of the reproductive strategies used by morels. Sexual reproduction in fungi is controlled by mating-type (MAT) genes and morels are thought to be mainly heterothallic with two idiomorphs, MAT1-1 and MAT1-2. Genomic sequencing of black (Elata clade) and yellow (Esculenta clade) morel species has led to the development of PCR primers designed to amplify genes from the two idiomorphs for rapid genotyping of isolates from these two clades. To evaluate the design and theoretical performance of these primers we performed a thorough bioinformatic investigation, including the detection of the MAT region in publicly available Morchella genomes and in-silico PCR analyses. All examined genomes, including those used for primer design, appeared to be heterothallic. This indicates an inherent fault in the original primer design which utilized a single Morchella genome, as the use of two genomes with complementary mating types would be required to design accurate primers for both idiomorphs. Furthermore, potential off-targets were identified for some of the previously published primer sets, but verification was challenging due to lack of adequate genomic information and detailed methodologies for primer design. Examinations of the black morel specific primer pairs (MAT11L/R and MAT22L/R) indicated the MAT22 primers would correctly target and amplify the MAT1-2 idiomorph, but the MAT11 primers appear to be capable of amplifying incorrect off-targets within the genome. The yellow morel primer pairs (EMAT1-1 L/R and EMAT1-2 L/R) appear to have reporting errors, as the published primer sequences are dissimilar with reported amplicon sequences and the EMAT1-2 primers appear to amplify the RNA polymerase II subunit (RPB2) gene. The lack of the reference genome used in primer design and descriptive methodology made it challenging to fully assess the apparent issues with the primers for this clade. In conclusion, additional work is still required for the generation of reliable primers to investigate mating types in morels and to assess their performance on different clades and across multiple geographical regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ima Fungus
Ima Fungus Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
11.00
自引率
3.70%
发文量
18
审稿时长
20 weeks
期刊介绍: The flagship journal of the International Mycological Association. IMA Fungus is an international, peer-reviewed, open-access, full colour, fast-track journal. Papers on any aspect of mycology are considered, and published on-line with final pagination after proofs have been corrected; they are then effectively published under the International Code of Nomenclature for algae, fungi, and plants. The journal strongly supports good practice policies, and requires voucher specimens or cultures to be deposited in a public collection with an online database, DNA sequences in GenBank, alignments in TreeBASE, and validating information on new scientific names, including typifications, to be lodged in MycoBank. News, meeting reports, personalia, research news, correspondence, book news, and information on forthcoming international meetings are included in each issue
期刊最新文献
A new leaf inhabiting ascomycete from the Jurassic (ca 170 Mya) of Yorkshire, UK, and insights into the appearance and diversification of filamentous Ascomycota. Enhanced detection of Pythium insidiosum via lipid profiling with matrix-assisted laser desorption ionization time of flight mass spectrometry. Comparative mitochondrial genomics of Thelebolaceae in Antarctica: insights into their extremophilic adaptations and evolutionary dynamics. Integration of fungal transcriptomics and metabolomics provides insights into the early interaction between the ORM fungus Tulasnella sp. and the orchid Serapias vomeracea seeds. Integrative taxonomy of Metarhizium anisopliae species complex, based on phylogenomics combined with morphometrics, metabolomics, and virulence data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1