{"title":"TMEM97被YY1转录激活,并通过GSK-3β/β-catenin信号通路促进结直肠癌的进展。","authors":"Dong Mao, Xiaowei Zhang, Zhaoping Wang, Guannan Xu, Yun Zhang","doi":"10.1007/s13577-022-00759-5","DOIUrl":null,"url":null,"abstract":"<p><p>Transmembrane protein 97 (TMEM97) is a conserved integral membrane protein highly expressed in various human cancers, including colorectal cancer (CRC), and it exhibits pro-tumor roles in breast cancer, gastric cancer, and glioma. However, whether TMEM97 participates in CRC progression is not fully understood. The expression of mRNA and protein was evaluated by real-time qPCR, western blotting, immunofluorescent, and immunohistochemical staining. TMEM97 functions in cell proliferation, apoptosis, migration, and invasion were assessed by CCK-8, flow cytometry, and transwell assays. The roles of TMEM97 in CRC cells in vivo was investigated using a subcutaneous xenograft model. The transcriptional regulation of TMEM97 was explored by luciferase reporter and ChIP assays. The silencing of TMEM97 inhibited migration and invasion of CRC cells in vitro and led to suppressed growth and enhanced apoptosis in CRC cells and xenografts, whereas overexpression of TMEM97 displayed opposite effects. Mechanistically, TMEM97 knockdown caused a reduction of the proliferating marker PCNA and an increase of pro-apoptotic proteins (cleaved caspase 8/3/7 and cleaved PARP) in CRC cells. TMEM97 also positively regulated the β-catenin signaling pathway in CRC cells and xenografts by modulating the phosphorylated-GSK-3β and active (non-phospho) β-catenin levels. Interestingly, YY1, a well-recognized oncogenic transcription factor, was identified to bind to the TMEM97 promoter and enhance its transcriptional activity, and silencing of TMEM97 abolished YY1-mediated pro-tumor effects on CRC cells. Our results suggest that TMEM97 is transcriptionally activated by YY1 and promotes CRC progression via the GSK-3β/β-catenin signaling pathway, providing that TMEM97 might be a novel therapeutic target for preventing CRC development.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1535-1546"},"PeriodicalIF":4.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"TMEM97 is transcriptionally activated by YY1 and promotes colorectal cancer progression via the GSK-3β/β-catenin signaling pathway.\",\"authors\":\"Dong Mao, Xiaowei Zhang, Zhaoping Wang, Guannan Xu, Yun Zhang\",\"doi\":\"10.1007/s13577-022-00759-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transmembrane protein 97 (TMEM97) is a conserved integral membrane protein highly expressed in various human cancers, including colorectal cancer (CRC), and it exhibits pro-tumor roles in breast cancer, gastric cancer, and glioma. However, whether TMEM97 participates in CRC progression is not fully understood. The expression of mRNA and protein was evaluated by real-time qPCR, western blotting, immunofluorescent, and immunohistochemical staining. TMEM97 functions in cell proliferation, apoptosis, migration, and invasion were assessed by CCK-8, flow cytometry, and transwell assays. The roles of TMEM97 in CRC cells in vivo was investigated using a subcutaneous xenograft model. The transcriptional regulation of TMEM97 was explored by luciferase reporter and ChIP assays. The silencing of TMEM97 inhibited migration and invasion of CRC cells in vitro and led to suppressed growth and enhanced apoptosis in CRC cells and xenografts, whereas overexpression of TMEM97 displayed opposite effects. Mechanistically, TMEM97 knockdown caused a reduction of the proliferating marker PCNA and an increase of pro-apoptotic proteins (cleaved caspase 8/3/7 and cleaved PARP) in CRC cells. TMEM97 also positively regulated the β-catenin signaling pathway in CRC cells and xenografts by modulating the phosphorylated-GSK-3β and active (non-phospho) β-catenin levels. Interestingly, YY1, a well-recognized oncogenic transcription factor, was identified to bind to the TMEM97 promoter and enhance its transcriptional activity, and silencing of TMEM97 abolished YY1-mediated pro-tumor effects on CRC cells. Our results suggest that TMEM97 is transcriptionally activated by YY1 and promotes CRC progression via the GSK-3β/β-catenin signaling pathway, providing that TMEM97 might be a novel therapeutic target for preventing CRC development.</p>\",\"PeriodicalId\":13228,\"journal\":{\"name\":\"Human Cell\",\"volume\":\"35 5\",\"pages\":\"1535-1546\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13577-022-00759-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-022-00759-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
TMEM97 is transcriptionally activated by YY1 and promotes colorectal cancer progression via the GSK-3β/β-catenin signaling pathway.
Transmembrane protein 97 (TMEM97) is a conserved integral membrane protein highly expressed in various human cancers, including colorectal cancer (CRC), and it exhibits pro-tumor roles in breast cancer, gastric cancer, and glioma. However, whether TMEM97 participates in CRC progression is not fully understood. The expression of mRNA and protein was evaluated by real-time qPCR, western blotting, immunofluorescent, and immunohistochemical staining. TMEM97 functions in cell proliferation, apoptosis, migration, and invasion were assessed by CCK-8, flow cytometry, and transwell assays. The roles of TMEM97 in CRC cells in vivo was investigated using a subcutaneous xenograft model. The transcriptional regulation of TMEM97 was explored by luciferase reporter and ChIP assays. The silencing of TMEM97 inhibited migration and invasion of CRC cells in vitro and led to suppressed growth and enhanced apoptosis in CRC cells and xenografts, whereas overexpression of TMEM97 displayed opposite effects. Mechanistically, TMEM97 knockdown caused a reduction of the proliferating marker PCNA and an increase of pro-apoptotic proteins (cleaved caspase 8/3/7 and cleaved PARP) in CRC cells. TMEM97 also positively regulated the β-catenin signaling pathway in CRC cells and xenografts by modulating the phosphorylated-GSK-3β and active (non-phospho) β-catenin levels. Interestingly, YY1, a well-recognized oncogenic transcription factor, was identified to bind to the TMEM97 promoter and enhance its transcriptional activity, and silencing of TMEM97 abolished YY1-mediated pro-tumor effects on CRC cells. Our results suggest that TMEM97 is transcriptionally activated by YY1 and promotes CRC progression via the GSK-3β/β-catenin signaling pathway, providing that TMEM97 might be a novel therapeutic target for preventing CRC development.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.