{"title":"苯并咪唑抑制乙酰胆碱酯酶和COX治疗阿尔茨海默病的设计、合成和评价","authors":"Sukhvir Kaur, Richa Minhas, Shivam Mishra, Birpal Kaur, Yogita Bansal, Gulshan Bansal","doi":"10.2174/1871524922666220428134001","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A simultaneous administration of an acetylcholinesterase (AChE) inhibitor and a NSAID as a drug cocktail has been documented to exhibit significantly protective effects in AD patients. But it suffers from poor patent compliance, pharmacodynamics and pharmacokinetic issues.</p><p><strong>Objective: </strong>The present study is aimed to design and synthesize a hybrid molecule capable of exhibiting both AChE inhibition and anti-inflammatory activities for de-accelerating the progression of AD. The synthesized molecules will be evaluated for in vitro and in vivo models.</p><p><strong>Methods: </strong>The present study involves the coupling of ibuprofen or naproxen to varied disubstituted amines (AChE inhibitor pharmacophore) through benzimidazole to develop two series of compounds i.e. IB01-IB05 and NP01-NP05. The synthesized compounds were characterized using FTIR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and MS. All compounds were evaluated for in vitro AChE inhibitory and COX inhibitory activities. The most active compound was taken for in vivo evaluation.</p><p><strong>Results: </strong>Compounds of series IB01-IB05 are found more potent as compared to NP01-NP05. The maximally potent compound IB04 in in vitro evaluation is selected for in vivo evaluation of memory restoration activity using scopolamine-induced amnesia model in mice. It significantly reverses the scopolamine-induced changes (i.e., escape latency time, mean time spent in target quadrant, brain AChE activity and oxidative stress) in a dose-dependent manner. IB04 at 8 mg/kg is significantly effective in lowering AD manifestation in comparison to donepezil.</p><p><strong>Conclusion: </strong>The findings indicate that Benzimidazole hybrids utilizing ibuprofen and pyrrolidine moiety may prove a useful template for the development of new chemical moieties against AD with multiple potencies.</p>","PeriodicalId":9799,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":"68-78"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design, Synthesis and Evaluation of Benzimidazole Hybrids to Inhibit Acetylcholinesterase and COX for Treatment of Alzheimer's Disease.\",\"authors\":\"Sukhvir Kaur, Richa Minhas, Shivam Mishra, Birpal Kaur, Yogita Bansal, Gulshan Bansal\",\"doi\":\"10.2174/1871524922666220428134001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>A simultaneous administration of an acetylcholinesterase (AChE) inhibitor and a NSAID as a drug cocktail has been documented to exhibit significantly protective effects in AD patients. But it suffers from poor patent compliance, pharmacodynamics and pharmacokinetic issues.</p><p><strong>Objective: </strong>The present study is aimed to design and synthesize a hybrid molecule capable of exhibiting both AChE inhibition and anti-inflammatory activities for de-accelerating the progression of AD. The synthesized molecules will be evaluated for in vitro and in vivo models.</p><p><strong>Methods: </strong>The present study involves the coupling of ibuprofen or naproxen to varied disubstituted amines (AChE inhibitor pharmacophore) through benzimidazole to develop two series of compounds i.e. IB01-IB05 and NP01-NP05. The synthesized compounds were characterized using FTIR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and MS. All compounds were evaluated for in vitro AChE inhibitory and COX inhibitory activities. The most active compound was taken for in vivo evaluation.</p><p><strong>Results: </strong>Compounds of series IB01-IB05 are found more potent as compared to NP01-NP05. The maximally potent compound IB04 in in vitro evaluation is selected for in vivo evaluation of memory restoration activity using scopolamine-induced amnesia model in mice. It significantly reverses the scopolamine-induced changes (i.e., escape latency time, mean time spent in target quadrant, brain AChE activity and oxidative stress) in a dose-dependent manner. IB04 at 8 mg/kg is significantly effective in lowering AD manifestation in comparison to donepezil.</p><p><strong>Conclusion: </strong>The findings indicate that Benzimidazole hybrids utilizing ibuprofen and pyrrolidine moiety may prove a useful template for the development of new chemical moieties against AD with multiple potencies.</p>\",\"PeriodicalId\":9799,\"journal\":{\"name\":\"Central nervous system agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"68-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central nervous system agents in medicinal chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1871524922666220428134001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Psychology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1871524922666220428134001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Psychology","Score":null,"Total":0}
Design, Synthesis and Evaluation of Benzimidazole Hybrids to Inhibit Acetylcholinesterase and COX for Treatment of Alzheimer's Disease.
Background: A simultaneous administration of an acetylcholinesterase (AChE) inhibitor and a NSAID as a drug cocktail has been documented to exhibit significantly protective effects in AD patients. But it suffers from poor patent compliance, pharmacodynamics and pharmacokinetic issues.
Objective: The present study is aimed to design and synthesize a hybrid molecule capable of exhibiting both AChE inhibition and anti-inflammatory activities for de-accelerating the progression of AD. The synthesized molecules will be evaluated for in vitro and in vivo models.
Methods: The present study involves the coupling of ibuprofen or naproxen to varied disubstituted amines (AChE inhibitor pharmacophore) through benzimidazole to develop two series of compounds i.e. IB01-IB05 and NP01-NP05. The synthesized compounds were characterized using FTIR, 1H-NMR, 13C-NMR and MS. All compounds were evaluated for in vitro AChE inhibitory and COX inhibitory activities. The most active compound was taken for in vivo evaluation.
Results: Compounds of series IB01-IB05 are found more potent as compared to NP01-NP05. The maximally potent compound IB04 in in vitro evaluation is selected for in vivo evaluation of memory restoration activity using scopolamine-induced amnesia model in mice. It significantly reverses the scopolamine-induced changes (i.e., escape latency time, mean time spent in target quadrant, brain AChE activity and oxidative stress) in a dose-dependent manner. IB04 at 8 mg/kg is significantly effective in lowering AD manifestation in comparison to donepezil.
Conclusion: The findings indicate that Benzimidazole hybrids utilizing ibuprofen and pyrrolidine moiety may prove a useful template for the development of new chemical moieties against AD with multiple potencies.
期刊介绍:
Central Nervous System Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of new central nervous system agents. Containing a series of timely in-depth reviews written by leaders in the field covering a range of current topics, Central Nervous System Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in the field.