{"title":"通过下调MGD1抑制单半乳糖二酰基甘油合成,导致莱茵衣藻膜脂重塑和三酰基甘油生物合成增强。","authors":"Jun-Woo Lee, Min-Woo Lee, Chun-Zhi Jin, Hee-Mock Oh, EonSeon Jin, Hyung-Gwan Lee","doi":"10.1186/s13068-022-02187-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Membrane lipid remodeling involves regulating the physiochemical modification of cellular membranes against abiotic stress or senescence, and it could be a trigger to increase neutral lipid content. In algae and higher plants, monogalactosyldiacylglycerol (MGDG) constitutes the highest proportion of total membrane lipids and is highly reduced as part of the membrane lipid remodeling response under several abiotic stresses. However, genetic regulation of MGDG synthesis and its influence on lipid synthesis has not been studied in microalgae. For development of an industrial microalgae strain showing high accumulation of triacylglycerol (TAG) by promoting membrane lipid remodeling, MGDG synthase 1 (MGD1) down-regulated mutant of Chlamydomonas reinhardtii (Cr-mgd1) was generated and evaluated for its suitability for biodiesel feedstock.</p><p><strong>Results: </strong>The Cr-mgd1 showed a 65% decrease in CrMGD1 gene expression level, 22% reduction in MGDG content, and 1.39 and 5.40 times increase in diacylglyceryltrimethylhomoserines (DGTS) and TAG, respectively. The expression levels of most genes related to the decomposition of MGDG (plastid galactoglycerolipid degradation1) and TAG metabolism (diacylglycerol O-acyltransferase1, phospholipid:diacylglycerol acyltransferase, and major lipid droplet protein) were increased. The imbalance of DGDG/MGDG ratio in Cr-mgd1 caused reduced photosynthetic electron transport, resulting in less light energy utilization and increased reactive oxygen species levels. In addition, endoplasmic reticulum stress was induced by increased DGTS levels. Thus, accelerated TAG accumulation in Cr-mgd1 was stimulated by increased cellular stress as well as lipid remodeling. Under high light (HL) intensity (400 µmol photons/m<sup>2</sup>/s), TAG productivity in Cr-mgd1-HL (1.99 mg/L/d) was 2.71 times higher than that in wild type (WT-HL). Moreover, under both nitrogen starvation and high light intensity, the lipid (124.55 mg/L/d), TAG (20.03 mg/L/d), and maximum neutral lipid (56.13 mg/L/d) productivity were the highest.</p><p><strong>Conclusions: </strong>By inducing lipid remodeling through the mgd1 gene expression regulation, the mutant not only showed high neutral lipid content but also reached the maximum neutral lipid productivity through cultivation under high light and nitrogen starvation conditions, thereby possessing improved biomass properties that are the most suitable for high quality biodiesel production. Thus, this mutant may help understand the role of MGD1 in lipid synthesis in Chlamydomonas and may be used to produce high amounts of TAG.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":" ","pages":"88"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419350/pdf/","citationCount":"1","resultStr":"{\"title\":\"Inhibition of monogalactosyldiacylglycerol synthesis by down-regulation of MGD1 leads to membrane lipid remodeling and enhanced triacylglycerol biosynthesis in Chlamydomonas reinhardtii.\",\"authors\":\"Jun-Woo Lee, Min-Woo Lee, Chun-Zhi Jin, Hee-Mock Oh, EonSeon Jin, Hyung-Gwan Lee\",\"doi\":\"10.1186/s13068-022-02187-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Membrane lipid remodeling involves regulating the physiochemical modification of cellular membranes against abiotic stress or senescence, and it could be a trigger to increase neutral lipid content. In algae and higher plants, monogalactosyldiacylglycerol (MGDG) constitutes the highest proportion of total membrane lipids and is highly reduced as part of the membrane lipid remodeling response under several abiotic stresses. However, genetic regulation of MGDG synthesis and its influence on lipid synthesis has not been studied in microalgae. For development of an industrial microalgae strain showing high accumulation of triacylglycerol (TAG) by promoting membrane lipid remodeling, MGDG synthase 1 (MGD1) down-regulated mutant of Chlamydomonas reinhardtii (Cr-mgd1) was generated and evaluated for its suitability for biodiesel feedstock.</p><p><strong>Results: </strong>The Cr-mgd1 showed a 65% decrease in CrMGD1 gene expression level, 22% reduction in MGDG content, and 1.39 and 5.40 times increase in diacylglyceryltrimethylhomoserines (DGTS) and TAG, respectively. The expression levels of most genes related to the decomposition of MGDG (plastid galactoglycerolipid degradation1) and TAG metabolism (diacylglycerol O-acyltransferase1, phospholipid:diacylglycerol acyltransferase, and major lipid droplet protein) were increased. The imbalance of DGDG/MGDG ratio in Cr-mgd1 caused reduced photosynthetic electron transport, resulting in less light energy utilization and increased reactive oxygen species levels. In addition, endoplasmic reticulum stress was induced by increased DGTS levels. Thus, accelerated TAG accumulation in Cr-mgd1 was stimulated by increased cellular stress as well as lipid remodeling. Under high light (HL) intensity (400 µmol photons/m<sup>2</sup>/s), TAG productivity in Cr-mgd1-HL (1.99 mg/L/d) was 2.71 times higher than that in wild type (WT-HL). Moreover, under both nitrogen starvation and high light intensity, the lipid (124.55 mg/L/d), TAG (20.03 mg/L/d), and maximum neutral lipid (56.13 mg/L/d) productivity were the highest.</p><p><strong>Conclusions: </strong>By inducing lipid remodeling through the mgd1 gene expression regulation, the mutant not only showed high neutral lipid content but also reached the maximum neutral lipid productivity through cultivation under high light and nitrogen starvation conditions, thereby possessing improved biomass properties that are the most suitable for high quality biodiesel production. Thus, this mutant may help understand the role of MGD1 in lipid synthesis in Chlamydomonas and may be used to produce high amounts of TAG.</p>\",\"PeriodicalId\":9125,\"journal\":{\"name\":\"Biotechnology for Biofuels and Bioproducts\",\"volume\":\" \",\"pages\":\"88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419350/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels and Bioproducts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13068-022-02187-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13068-022-02187-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inhibition of monogalactosyldiacylglycerol synthesis by down-regulation of MGD1 leads to membrane lipid remodeling and enhanced triacylglycerol biosynthesis in Chlamydomonas reinhardtii.
Background: Membrane lipid remodeling involves regulating the physiochemical modification of cellular membranes against abiotic stress or senescence, and it could be a trigger to increase neutral lipid content. In algae and higher plants, monogalactosyldiacylglycerol (MGDG) constitutes the highest proportion of total membrane lipids and is highly reduced as part of the membrane lipid remodeling response under several abiotic stresses. However, genetic regulation of MGDG synthesis and its influence on lipid synthesis has not been studied in microalgae. For development of an industrial microalgae strain showing high accumulation of triacylglycerol (TAG) by promoting membrane lipid remodeling, MGDG synthase 1 (MGD1) down-regulated mutant of Chlamydomonas reinhardtii (Cr-mgd1) was generated and evaluated for its suitability for biodiesel feedstock.
Results: The Cr-mgd1 showed a 65% decrease in CrMGD1 gene expression level, 22% reduction in MGDG content, and 1.39 and 5.40 times increase in diacylglyceryltrimethylhomoserines (DGTS) and TAG, respectively. The expression levels of most genes related to the decomposition of MGDG (plastid galactoglycerolipid degradation1) and TAG metabolism (diacylglycerol O-acyltransferase1, phospholipid:diacylglycerol acyltransferase, and major lipid droplet protein) were increased. The imbalance of DGDG/MGDG ratio in Cr-mgd1 caused reduced photosynthetic electron transport, resulting in less light energy utilization and increased reactive oxygen species levels. In addition, endoplasmic reticulum stress was induced by increased DGTS levels. Thus, accelerated TAG accumulation in Cr-mgd1 was stimulated by increased cellular stress as well as lipid remodeling. Under high light (HL) intensity (400 µmol photons/m2/s), TAG productivity in Cr-mgd1-HL (1.99 mg/L/d) was 2.71 times higher than that in wild type (WT-HL). Moreover, under both nitrogen starvation and high light intensity, the lipid (124.55 mg/L/d), TAG (20.03 mg/L/d), and maximum neutral lipid (56.13 mg/L/d) productivity were the highest.
Conclusions: By inducing lipid remodeling through the mgd1 gene expression regulation, the mutant not only showed high neutral lipid content but also reached the maximum neutral lipid productivity through cultivation under high light and nitrogen starvation conditions, thereby possessing improved biomass properties that are the most suitable for high quality biodiesel production. Thus, this mutant may help understand the role of MGD1 in lipid synthesis in Chlamydomonas and may be used to produce high amounts of TAG.