从铁代谢的角度看癌症干细胞的耐药性。

IF 5 3区 医学 Q2 IMMUNOLOGY Inflammation and Regeneration Pub Date : 2022-11-03 DOI:10.1186/s41232-022-00220-y
Wenqian Wang, Kouichi Tabu, Alapati Aimaitijiang, Tetsuya Taga
{"title":"从铁代谢的角度看癌症干细胞的耐药性。","authors":"Wenqian Wang,&nbsp;Kouichi Tabu,&nbsp;Alapati Aimaitijiang,&nbsp;Tetsuya Taga","doi":"10.1186/s41232-022-00220-y","DOIUrl":null,"url":null,"abstract":"<p><p>Due to increased resistance to standard chemo/radiotherapies and relapse, highly tumorigenic cancer stem cells (CSCs) have been proposed as a promising target for the development of effective cancer treatments. In order to develop innovative cancer therapies that target CSCs, much attention has focused on the iron metabolism of CSCs, which has been considered to contribute to self-renewal of CSCs. Here, we review recent advances in iron metabolism and conventional iron metabolism-targeted cancer therapies, as well as therapy resistance of CSCs and potential treatment options to overcome them, which provide important insights into therapeutic strategies against intractable cancers. Potential treatment options targeting iron homeostasis, including small-molecule inhibitors, nanotechnology platforms, ferroptosis, and 5-ALA-PDT, might be a focus of future research for the development of innovative cancer therapies that tackle CSCs.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632139/pdf/","citationCount":"2","resultStr":"{\"title\":\"Therapy-resistant nature of cancer stem cells in view of iron metabolism.\",\"authors\":\"Wenqian Wang,&nbsp;Kouichi Tabu,&nbsp;Alapati Aimaitijiang,&nbsp;Tetsuya Taga\",\"doi\":\"10.1186/s41232-022-00220-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to increased resistance to standard chemo/radiotherapies and relapse, highly tumorigenic cancer stem cells (CSCs) have been proposed as a promising target for the development of effective cancer treatments. In order to develop innovative cancer therapies that target CSCs, much attention has focused on the iron metabolism of CSCs, which has been considered to contribute to self-renewal of CSCs. Here, we review recent advances in iron metabolism and conventional iron metabolism-targeted cancer therapies, as well as therapy resistance of CSCs and potential treatment options to overcome them, which provide important insights into therapeutic strategies against intractable cancers. Potential treatment options targeting iron homeostasis, including small-molecule inhibitors, nanotechnology platforms, ferroptosis, and 5-ALA-PDT, might be a focus of future research for the development of innovative cancer therapies that tackle CSCs.</p>\",\"PeriodicalId\":13588,\"journal\":{\"name\":\"Inflammation and Regeneration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632139/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation and Regeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s41232-022-00220-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41232-022-00220-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

由于对标准化疗/放疗的耐药性增加和复发,高致瘤性癌症干细胞(CSCs)已被提出作为开发有效癌症治疗的有希望的靶点。为了开发针对CSCs的创新癌症治疗方法,人们非常关注CSCs的铁代谢,这被认为有助于CSCs的自我更新。在这里,我们回顾了铁代谢和传统铁代谢靶向癌症治疗的最新进展,以及CSCs的治疗耐药性和克服它们的潜在治疗选择,这为治疗难治性癌症的治疗策略提供了重要的见解。针对铁稳态的潜在治疗方案,包括小分子抑制剂、纳米技术平台、铁凋亡和5-ALA-PDT,可能是未来研究开发针对csc的创新癌症疗法的重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Therapy-resistant nature of cancer stem cells in view of iron metabolism.

Due to increased resistance to standard chemo/radiotherapies and relapse, highly tumorigenic cancer stem cells (CSCs) have been proposed as a promising target for the development of effective cancer treatments. In order to develop innovative cancer therapies that target CSCs, much attention has focused on the iron metabolism of CSCs, which has been considered to contribute to self-renewal of CSCs. Here, we review recent advances in iron metabolism and conventional iron metabolism-targeted cancer therapies, as well as therapy resistance of CSCs and potential treatment options to overcome them, which provide important insights into therapeutic strategies against intractable cancers. Potential treatment options targeting iron homeostasis, including small-molecule inhibitors, nanotechnology platforms, ferroptosis, and 5-ALA-PDT, might be a focus of future research for the development of innovative cancer therapies that tackle CSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
1.20%
发文量
45
审稿时长
11 weeks
期刊介绍: Inflammation and Regeneration is the official journal of the Japanese Society of Inflammation and Regeneration (JSIR). This journal provides an open access forum which covers a wide range of scientific topics in the basic and clinical researches on inflammation and regenerative medicine. It also covers investigations of infectious diseases, including COVID-19 and other emerging infectious diseases, which involve the inflammatory responses. Inflammation and Regeneration publishes papers in the following categories: research article, note, rapid communication, case report, review and clinical drug evaluation.
期刊最新文献
CX3CL1-CX3CR1 axis protects retinal ganglion cells by inhibiting microglia activation in a distal optic nerve trauma model Emilin2 marks the target region for mesenchymal cell accumulation in bone regeneration Role of cellular senescence in inflammation and regeneration Th22 is the effector cell of thymosin β15-induced hair regeneration in mice The gut-liver axis in hepatobiliary diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1