Tao Wang, Changhua Lu, Yining Sun, Hengyang Fang, Weiwei Jiang, Chun Liu
{"title":"利用单导联心电信号残余注意机制网络检测睡眠呼吸暂停的方法。","authors":"Tao Wang, Changhua Lu, Yining Sun, Hengyang Fang, Weiwei Jiang, Chun Liu","doi":"10.1515/bmt-2022-0067","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep apnea is a sleep disorder caused by weakened or suspended breathing during sleep, which seriously affects the work and health of patients. The traditional polysomnography (PSG) detection process is complicated and expensive, which has attracted researchers to explore a rapid detection method based on single-lead ECG signals. However, existing ECG-based sleep apnea detection methods have certain limitations and complexities, mainly relying on human-crafted features. To solve the problem, the paper develops a sleep apnea detection method based on a residual attention mechanism network. The method uses the RR interval signal and the R-peak signal derived from the ECG signal as input, realizes feature extraction through the residual network (ResNet), and adds the SENet attention mechanism to deepen the mining of channel features. Experimental results show that the per-segment accuracy of the proposed method can reach 86.2%. Compared with existing works, its accuracy has increased by 1.1-8.1%. These results show that the proposed residual attention network can effectively use ECG signals to quickly detect sleep apnea. Meanwhile, compared with existing works, the proposed method overcomes the limitations and complexity of human-crafted features in sleep apnea detection research.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method to detect sleep apnea using residual attention mechanism network from single-lead ECG signal.\",\"authors\":\"Tao Wang, Changhua Lu, Yining Sun, Hengyang Fang, Weiwei Jiang, Chun Liu\",\"doi\":\"10.1515/bmt-2022-0067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sleep apnea is a sleep disorder caused by weakened or suspended breathing during sleep, which seriously affects the work and health of patients. The traditional polysomnography (PSG) detection process is complicated and expensive, which has attracted researchers to explore a rapid detection method based on single-lead ECG signals. However, existing ECG-based sleep apnea detection methods have certain limitations and complexities, mainly relying on human-crafted features. To solve the problem, the paper develops a sleep apnea detection method based on a residual attention mechanism network. The method uses the RR interval signal and the R-peak signal derived from the ECG signal as input, realizes feature extraction through the residual network (ResNet), and adds the SENet attention mechanism to deepen the mining of channel features. Experimental results show that the per-segment accuracy of the proposed method can reach 86.2%. Compared with existing works, its accuracy has increased by 1.1-8.1%. These results show that the proposed residual attention network can effectively use ECG signals to quickly detect sleep apnea. Meanwhile, compared with existing works, the proposed method overcomes the limitations and complexity of human-crafted features in sleep apnea detection research.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2022-0067\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/26 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2022-0067","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/26 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A method to detect sleep apnea using residual attention mechanism network from single-lead ECG signal.
Sleep apnea is a sleep disorder caused by weakened or suspended breathing during sleep, which seriously affects the work and health of patients. The traditional polysomnography (PSG) detection process is complicated and expensive, which has attracted researchers to explore a rapid detection method based on single-lead ECG signals. However, existing ECG-based sleep apnea detection methods have certain limitations and complexities, mainly relying on human-crafted features. To solve the problem, the paper develops a sleep apnea detection method based on a residual attention mechanism network. The method uses the RR interval signal and the R-peak signal derived from the ECG signal as input, realizes feature extraction through the residual network (ResNet), and adds the SENet attention mechanism to deepen the mining of channel features. Experimental results show that the per-segment accuracy of the proposed method can reach 86.2%. Compared with existing works, its accuracy has increased by 1.1-8.1%. These results show that the proposed residual attention network can effectively use ECG signals to quickly detect sleep apnea. Meanwhile, compared with existing works, the proposed method overcomes the limitations and complexity of human-crafted features in sleep apnea detection research.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.