{"title":"高阶逻辑中Smith范式的形式化。","authors":"Jose Divasón, René Thiemann","doi":"10.1007/s10817-022-09631-5","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents formal correctness proofs in Isabelle/HOL of algorithms to transform a matrix into Smith normal form, a canonical matrix form, in a general setting: the algorithms are written in an abstract form and parameterized by very few simple operations. We formally show their soundness provided the operations exist and satisfy some conditions, which always hold on Euclidean domains. We also provide a formal proof on some results about the generality of such algorithms as well as the uniqueness of the Smith normal form. Since Isabelle/HOL does not feature dependent types, the development is carried out by switching conveniently between two different existing libraries by means of the lifting and transfer package and the use of local type definitions, a sound extension to HOL.</p>","PeriodicalId":15082,"journal":{"name":"Journal of Automated Reasoning","volume":"66 4","pages":"1065-1095"},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637085/pdf/","citationCount":"1","resultStr":"{\"title\":\"A Formalization of the Smith Normal Form in Higher-Order Logic.\",\"authors\":\"Jose Divasón, René Thiemann\",\"doi\":\"10.1007/s10817-022-09631-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work presents formal correctness proofs in Isabelle/HOL of algorithms to transform a matrix into Smith normal form, a canonical matrix form, in a general setting: the algorithms are written in an abstract form and parameterized by very few simple operations. We formally show their soundness provided the operations exist and satisfy some conditions, which always hold on Euclidean domains. We also provide a formal proof on some results about the generality of such algorithms as well as the uniqueness of the Smith normal form. Since Isabelle/HOL does not feature dependent types, the development is carried out by switching conveniently between two different existing libraries by means of the lifting and transfer package and the use of local type definitions, a sound extension to HOL.</p>\",\"PeriodicalId\":15082,\"journal\":{\"name\":\"Journal of Automated Reasoning\",\"volume\":\"66 4\",\"pages\":\"1065-1095\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637085/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automated Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10817-022-09631-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/5/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automated Reasoning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10817-022-09631-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Formalization of the Smith Normal Form in Higher-Order Logic.
This work presents formal correctness proofs in Isabelle/HOL of algorithms to transform a matrix into Smith normal form, a canonical matrix form, in a general setting: the algorithms are written in an abstract form and parameterized by very few simple operations. We formally show their soundness provided the operations exist and satisfy some conditions, which always hold on Euclidean domains. We also provide a formal proof on some results about the generality of such algorithms as well as the uniqueness of the Smith normal form. Since Isabelle/HOL does not feature dependent types, the development is carried out by switching conveniently between two different existing libraries by means of the lifting and transfer package and the use of local type definitions, a sound extension to HOL.
期刊介绍:
The Journal of Automated Reasoning is an interdisciplinary journal that maintains a balance between theory, implementation and application. The spectrum of material published ranges from the presentation of a new inference rule with proof of its logical properties to a detailed account of a computer program designed to solve various problems in industry. The main fields covered are automated theorem proving, logic programming, expert systems, program synthesis and validation, artificial intelligence, computational logic, robotics, and various industrial applications. The papers share the common feature of focusing on several aspects of automated reasoning, a field whose objective is the design and implementation of a computer program that serves as an assistant in solving problems and in answering questions that require reasoning.
The Journal of Automated Reasoning provides a forum and a means for exchanging information for those interested purely in theory, those interested primarily in implementation, and those interested in specific research and industrial applications.