{"title":"CircIRAK1 通过与 miR-330-5p 结合上调 TRIM14,加重动脉粥样硬化中氧化-LDL 诱导的内皮细胞损伤。","authors":"Fang Liu, Bo Gao, Yu Wang","doi":"10.3233/CH-221551","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Atherosclerosis (AS) is a common inflammatory cardiovascular disease, and circular RNAs (circRNAs) are associated with the pathogenesis of AS. CircRNA Interleukin (IL)-1 receptor-associated kinase 1 (circIRAK1, hsa_circ_0091822) was upregulated in AS. The aims of this study were to ascertain the function and mechanism of circIRAK1 in AS.</p><p><strong>Methods: </strong>Human Umbilical Vein Endothelial Cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL). RNA expression was detected by reverse transcription-quantitative polymerase chain reaction assay. Cell viability was examined using Cell Counting Kit-8 assay. Tube formation ability was measured by tube formation assay. Cell apoptosis was assessed using flow cytometry. Western blot was used for protein detection. Inflammatory reaction was evaluated via Enzyme-linked immunosorbent assay. Oxidative injury was analyzed by commercial kits. Target binding was determined through dual-luciferase reporter assay, RNA immunoprecipitation assay and pull-down assay.</p><p><strong>Results: </strong>The expression of circIRAK1 was upregulated in AS serums and ox-LDL-treated HUVECs. Silencing circIRAK1 enhanced cell viability and angiogenesis while suppressed cell apoptosis, inflammatory response and oxidative stress in ox-LDL-stimulated HUVECs. CircIRAK1 served as a molecular sponge for miR-330-5p. CircIRAK1 regulated ox-LDL-mediated cell injury by absorbing miR-330-5p. In addition, miR-330-5p prevented endothelial cell dysfunction caused by ox-LDL via targeting tripartite motif containing 14 (TRIM14). TRIM14 expression was upregulated by circIRAK1 through sponging miR-330-5p.</p><p><strong>Conclusion: </strong>These results suggested that circIRAK1 upregulated TRIM14 by interacting with miR-330-5p, consequently contributing to ox-LDL-induced endothelial cell injury in AS.</p>","PeriodicalId":10425,"journal":{"name":"Clinical hemorheology and microcirculation","volume":" ","pages":"195-209"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"CircIRAK1 aggravates ox-LDL-induced endothelial cell injury in atherosclerosis via TRIM14 upregulation by binding to miR-330-5p.\",\"authors\":\"Fang Liu, Bo Gao, Yu Wang\",\"doi\":\"10.3233/CH-221551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Atherosclerosis (AS) is a common inflammatory cardiovascular disease, and circular RNAs (circRNAs) are associated with the pathogenesis of AS. CircRNA Interleukin (IL)-1 receptor-associated kinase 1 (circIRAK1, hsa_circ_0091822) was upregulated in AS. The aims of this study were to ascertain the function and mechanism of circIRAK1 in AS.</p><p><strong>Methods: </strong>Human Umbilical Vein Endothelial Cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL). RNA expression was detected by reverse transcription-quantitative polymerase chain reaction assay. Cell viability was examined using Cell Counting Kit-8 assay. Tube formation ability was measured by tube formation assay. Cell apoptosis was assessed using flow cytometry. Western blot was used for protein detection. Inflammatory reaction was evaluated via Enzyme-linked immunosorbent assay. Oxidative injury was analyzed by commercial kits. Target binding was determined through dual-luciferase reporter assay, RNA immunoprecipitation assay and pull-down assay.</p><p><strong>Results: </strong>The expression of circIRAK1 was upregulated in AS serums and ox-LDL-treated HUVECs. Silencing circIRAK1 enhanced cell viability and angiogenesis while suppressed cell apoptosis, inflammatory response and oxidative stress in ox-LDL-stimulated HUVECs. CircIRAK1 served as a molecular sponge for miR-330-5p. CircIRAK1 regulated ox-LDL-mediated cell injury by absorbing miR-330-5p. In addition, miR-330-5p prevented endothelial cell dysfunction caused by ox-LDL via targeting tripartite motif containing 14 (TRIM14). TRIM14 expression was upregulated by circIRAK1 through sponging miR-330-5p.</p><p><strong>Conclusion: </strong>These results suggested that circIRAK1 upregulated TRIM14 by interacting with miR-330-5p, consequently contributing to ox-LDL-induced endothelial cell injury in AS.</p>\",\"PeriodicalId\":10425,\"journal\":{\"name\":\"Clinical hemorheology and microcirculation\",\"volume\":\" \",\"pages\":\"195-209\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical hemorheology and microcirculation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/CH-221551\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical hemorheology and microcirculation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/CH-221551","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
CircIRAK1 aggravates ox-LDL-induced endothelial cell injury in atherosclerosis via TRIM14 upregulation by binding to miR-330-5p.
Background: Atherosclerosis (AS) is a common inflammatory cardiovascular disease, and circular RNAs (circRNAs) are associated with the pathogenesis of AS. CircRNA Interleukin (IL)-1 receptor-associated kinase 1 (circIRAK1, hsa_circ_0091822) was upregulated in AS. The aims of this study were to ascertain the function and mechanism of circIRAK1 in AS.
Methods: Human Umbilical Vein Endothelial Cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL). RNA expression was detected by reverse transcription-quantitative polymerase chain reaction assay. Cell viability was examined using Cell Counting Kit-8 assay. Tube formation ability was measured by tube formation assay. Cell apoptosis was assessed using flow cytometry. Western blot was used for protein detection. Inflammatory reaction was evaluated via Enzyme-linked immunosorbent assay. Oxidative injury was analyzed by commercial kits. Target binding was determined through dual-luciferase reporter assay, RNA immunoprecipitation assay and pull-down assay.
Results: The expression of circIRAK1 was upregulated in AS serums and ox-LDL-treated HUVECs. Silencing circIRAK1 enhanced cell viability and angiogenesis while suppressed cell apoptosis, inflammatory response and oxidative stress in ox-LDL-stimulated HUVECs. CircIRAK1 served as a molecular sponge for miR-330-5p. CircIRAK1 regulated ox-LDL-mediated cell injury by absorbing miR-330-5p. In addition, miR-330-5p prevented endothelial cell dysfunction caused by ox-LDL via targeting tripartite motif containing 14 (TRIM14). TRIM14 expression was upregulated by circIRAK1 through sponging miR-330-5p.
Conclusion: These results suggested that circIRAK1 upregulated TRIM14 by interacting with miR-330-5p, consequently contributing to ox-LDL-induced endothelial cell injury in AS.
期刊介绍:
Clinical Hemorheology and Microcirculation, a peer-reviewed international scientific journal, serves as an aid to understanding the flow properties of blood and the relationship to normal and abnormal physiology. The rapidly expanding science of hemorheology concerns blood, its components and the blood vessels with which blood interacts. It includes perihemorheology, i.e., the rheology of fluid and structures in the perivascular and interstitial spaces as well as the lymphatic system. The clinical aspects include pathogenesis, symptomatology and diagnostic methods, and the fields of prophylaxis and therapy in all branches of medicine and surgery, pharmacology and drug research.
The endeavour of the Editors-in-Chief and publishers of Clinical Hemorheology and Microcirculation is to bring together contributions from those working in various fields related to blood flow all over the world. The editors of Clinical Hemorheology and Microcirculation are from those countries in Europe, Asia, Australia and America where appreciable work in clinical hemorheology and microcirculation is being carried out. Each editor takes responsibility to decide on the acceptance of a manuscript. He is required to have the manuscript appraised by two referees and may be one of them himself. The executive editorial office, to which the manuscripts have been submitted, is responsible for rapid handling of the reviewing process.
Clinical Hemorheology and Microcirculation accepts original papers, brief communications, mini-reports and letters to the Editors-in-Chief. Review articles, providing general views and new insights into related subjects, are regularly invited by the Editors-in-Chief. Proceedings of international and national conferences on clinical hemorheology (in original form or as abstracts) complete the range of editorial features.