肺部疾病计算机辅助筛查深圳胸片数据集肺异常注释

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Pub Date : 2022-07-01 Epub Date: 2022-07-13 DOI:10.3390/data7070095
Feng Yang, Pu-Xuan Lu, Min Deng, Yì Xiáng J Wáng, Sivaramakrishnan Rajaraman, Zhiyun Xue, Les R Folio, Sameer K Antani, Stefan Jaeger
{"title":"肺部疾病计算机辅助筛查深圳胸片数据集肺异常注释","authors":"Feng Yang,&nbsp;Pu-Xuan Lu,&nbsp;Min Deng,&nbsp;Yì Xiáng J Wáng,&nbsp;Sivaramakrishnan Rajaraman,&nbsp;Zhiyun Xue,&nbsp;Les R Folio,&nbsp;Sameer K Antani,&nbsp;Stefan Jaeger","doi":"10.3390/data7070095","DOIUrl":null,"url":null,"abstract":"<p><p>Developments in deep learning techniques have led to significant advances in automated abnormality detection in radiological images and paved the way for their potential use in computer-aided diagnosis (CAD) systems. However, the development of CAD systems for pulmonary tuberculosis (TB) diagnosis is hampered by the lack of training data that is of good visual and diagnostic quality, of sufficient size, variety, and, where relevant, containing fine region annotations. This study presents a collection of annotations/segmentations of pulmonary radiological manifestations that are consistent with TB in the publicly available and widely used Shenzhen chest X-ray (CXR) dataset made available by the U.S. National Library of Medicine and obtained via a research collaboration with No. 3. People's Hospital Shenzhen, China. The goal of releasing these annotations is to advance the state-of-the-art for image segmentation methods toward improving the performance of fine-grained segmentation of TB-consistent findings in digital Chest X-ray images. The annotation collection comprises the following: 1) annotation files in JSON (JavaScript Object Notation) format that indicate locations and shapes of 19 lung pattern abnormalities for 336 TB patients; 2) mask files saved in PNG format for each abnormality per TB patient; 3) a CSV (comma-separated values) file that summarizes lung abnormality types and numbers per TB patient. To the best of our knowledge, this is the first collection of pixel-level annotations of TB-consistent findings in CXRs. <b>Dataset:</b> https://data.lhncbc.nlm.nih.gov/public/Tuberculosis-Chest-X-ray-Datasets/Shenzhen-Hospital-CXR-Set/Annotations/index.html.</p>","PeriodicalId":36824,"journal":{"name":"Data","volume":"7 7","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645800/pdf/","citationCount":"5","resultStr":"{\"title\":\"Annotations of Lung Abnormalities in Shenzhen Chest X-ray Dataset for Computer-Aided Screening of Pulmonary Diseases.\",\"authors\":\"Feng Yang,&nbsp;Pu-Xuan Lu,&nbsp;Min Deng,&nbsp;Yì Xiáng J Wáng,&nbsp;Sivaramakrishnan Rajaraman,&nbsp;Zhiyun Xue,&nbsp;Les R Folio,&nbsp;Sameer K Antani,&nbsp;Stefan Jaeger\",\"doi\":\"10.3390/data7070095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developments in deep learning techniques have led to significant advances in automated abnormality detection in radiological images and paved the way for their potential use in computer-aided diagnosis (CAD) systems. However, the development of CAD systems for pulmonary tuberculosis (TB) diagnosis is hampered by the lack of training data that is of good visual and diagnostic quality, of sufficient size, variety, and, where relevant, containing fine region annotations. This study presents a collection of annotations/segmentations of pulmonary radiological manifestations that are consistent with TB in the publicly available and widely used Shenzhen chest X-ray (CXR) dataset made available by the U.S. National Library of Medicine and obtained via a research collaboration with No. 3. People's Hospital Shenzhen, China. The goal of releasing these annotations is to advance the state-of-the-art for image segmentation methods toward improving the performance of fine-grained segmentation of TB-consistent findings in digital Chest X-ray images. The annotation collection comprises the following: 1) annotation files in JSON (JavaScript Object Notation) format that indicate locations and shapes of 19 lung pattern abnormalities for 336 TB patients; 2) mask files saved in PNG format for each abnormality per TB patient; 3) a CSV (comma-separated values) file that summarizes lung abnormality types and numbers per TB patient. To the best of our knowledge, this is the first collection of pixel-level annotations of TB-consistent findings in CXRs. <b>Dataset:</b> https://data.lhncbc.nlm.nih.gov/public/Tuberculosis-Chest-X-ray-Datasets/Shenzhen-Hospital-CXR-Set/Annotations/index.html.</p>\",\"PeriodicalId\":36824,\"journal\":{\"name\":\"Data\",\"volume\":\"7 7\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645800/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.3390/data7070095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.3390/data7070095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

摘要

深度学习技术的发展使放射图像的自动异常检测取得了重大进展,并为其在计算机辅助诊断(CAD)系统中的潜在应用铺平了道路。然而,肺结核(TB)诊断的CAD系统的发展受到缺乏训练数据的阻碍,这些训练数据具有良好的视觉和诊断质量,足够的大小,种类,并且在相关的情况下包含精细的区域注释。本研究通过与No. 3的研究合作,在美国国家医学图书馆提供的公开和广泛使用的深圳胸部x射线(CXR)数据集中提供了与结核病一致的肺部放射表现的注释/分割集。深圳市人民医院发布这些注释的目的是推进最先进的图像分割方法,以改善数字胸部x线图像中结核病一致发现的细粒度分割性能。注释集合包括以下内容:1)JSON (JavaScript Object Notation)格式的注释文件,该文件显示了336例结核病患者19个肺形态异常的位置和形状;2)每个TB患者每个异常以PNG格式保存掩码文件;3)汇总每个TB患者肺部异常类型和数量的CSV(逗号分隔值)文件。据我们所知,这是cxr中与结核病一致的发现的第一个像素级注释集合。数据集:https://data.lhncbc.nlm.nih.gov/public/Tuberculosis-Chest-X-ray-Datasets/Shenzhen-Hospital-CXR-Set/Annotations/index.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Annotations of Lung Abnormalities in Shenzhen Chest X-ray Dataset for Computer-Aided Screening of Pulmonary Diseases.

Developments in deep learning techniques have led to significant advances in automated abnormality detection in radiological images and paved the way for their potential use in computer-aided diagnosis (CAD) systems. However, the development of CAD systems for pulmonary tuberculosis (TB) diagnosis is hampered by the lack of training data that is of good visual and diagnostic quality, of sufficient size, variety, and, where relevant, containing fine region annotations. This study presents a collection of annotations/segmentations of pulmonary radiological manifestations that are consistent with TB in the publicly available and widely used Shenzhen chest X-ray (CXR) dataset made available by the U.S. National Library of Medicine and obtained via a research collaboration with No. 3. People's Hospital Shenzhen, China. The goal of releasing these annotations is to advance the state-of-the-art for image segmentation methods toward improving the performance of fine-grained segmentation of TB-consistent findings in digital Chest X-ray images. The annotation collection comprises the following: 1) annotation files in JSON (JavaScript Object Notation) format that indicate locations and shapes of 19 lung pattern abnormalities for 336 TB patients; 2) mask files saved in PNG format for each abnormality per TB patient; 3) a CSV (comma-separated values) file that summarizes lung abnormality types and numbers per TB patient. To the best of our knowledge, this is the first collection of pixel-level annotations of TB-consistent findings in CXRs. Dataset: https://data.lhncbc.nlm.nih.gov/public/Tuberculosis-Chest-X-ray-Datasets/Shenzhen-Hospital-CXR-Set/Annotations/index.html.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
期刊最新文献
Medical Opinions Analysis about the Decrease of Autopsies Using Emerging Pattern Mining Unlocking Insights: Analysing COVID-19 Lockdown Policies and Mobility Data in Victoria, Australia, through a Data-Driven Machine Learning Approach Expert-Annotated Dataset to Study Cyberbullying in Polish Language Genome Sequence of the Plant-Growth-Promoting Endophyte Curtobacterium flaccumfaciens Strain W004 A Qualitative Dataset for Coffee Bio-Aggressors Detection Based on the Ancestral Knowledge of the Cauca Coffee Farmers in Colombia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1