Georgia Cametti, Mariko Nagashima, Sergey V Churakov
{"title":"孤对电子定位在温度诱导的麦饭石相变中的作用。","authors":"Georgia Cametti, Mariko Nagashima, Sergey V Churakov","doi":"10.1107/S2052520622006254","DOIUrl":null,"url":null,"abstract":"<p><p>The crystal structure of mimetite Pb<sub>5</sub>(AsO<sub>4</sub>)<sub>3</sub>Cl, a phosphate with apatite structure-type has been investigated in situ at 123, 173, 273, 288, 353 and 393 K. A careful inspection of the diffraction pattern and subsequent structure refinements indicated that mimetite transforms from the monoclinic to the hexagonal polymorph with increasing temperature. At 123 K, a monoclinic superstructure, mimetite-2M, with cell parameters a = 20.4487 (9), b = 7.4362 (2), c = 20.4513 (9) Å, β = 119.953 (6)°, V = 2694.5 (2) Å<sup>3</sup> and space group P2<sub>1</sub> was observed. From 173 to 353 K, the reflections of the supercell were evident only along one direction of the corresponding hexagonal apatite-cell and the structure transforms to the polymorph mimetite-M with space group P2<sub>1</sub>/b and unit-cell parameters a = 10.2378 (3), b = 20.4573 (7), c = 7.4457 (2) Å, β = 120.039 (5)°, V = 1349.96 (9) Å<sup>3</sup>. Only at higher temperature, i.e. 393 K, does mimetite adopt the hexagonal space group P6<sub>3</sub>/m characteristic of apatite structure-types. The role of the electron lone pairs of Pb atoms in the phase transition was investigated through the analysis of the electron localization function (ELF) calculated based on the DFT-geometry optimized structures of the three polymorphs. The changes in spatial distribution of the 6s<sup>2</sup> electron density during the phase transitions were explored by means of the Wannier Function Centres (WFCs) derived from ab initio molecular dynamics trajectories. In the high-temperature hexagonal structure the 6s<sup>2</sup> electrons are spherically symmetric relative to the position of Pb atoms. At low temperature the maximum of 6s<sup>2</sup> electron density is displaced relative to the position of Pb atom contributing to the polar interaction in the monoclinic polymorphs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370212/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of lone-pair electron localization in temperature-induced phase transitions in mimetite.\",\"authors\":\"Georgia Cametti, Mariko Nagashima, Sergey V Churakov\",\"doi\":\"10.1107/S2052520622006254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The crystal structure of mimetite Pb<sub>5</sub>(AsO<sub>4</sub>)<sub>3</sub>Cl, a phosphate with apatite structure-type has been investigated in situ at 123, 173, 273, 288, 353 and 393 K. A careful inspection of the diffraction pattern and subsequent structure refinements indicated that mimetite transforms from the monoclinic to the hexagonal polymorph with increasing temperature. At 123 K, a monoclinic superstructure, mimetite-2M, with cell parameters a = 20.4487 (9), b = 7.4362 (2), c = 20.4513 (9) Å, β = 119.953 (6)°, V = 2694.5 (2) Å<sup>3</sup> and space group P2<sub>1</sub> was observed. From 173 to 353 K, the reflections of the supercell were evident only along one direction of the corresponding hexagonal apatite-cell and the structure transforms to the polymorph mimetite-M with space group P2<sub>1</sub>/b and unit-cell parameters a = 10.2378 (3), b = 20.4573 (7), c = 7.4457 (2) Å, β = 120.039 (5)°, V = 1349.96 (9) Å<sup>3</sup>. Only at higher temperature, i.e. 393 K, does mimetite adopt the hexagonal space group P6<sub>3</sub>/m characteristic of apatite structure-types. The role of the electron lone pairs of Pb atoms in the phase transition was investigated through the analysis of the electron localization function (ELF) calculated based on the DFT-geometry optimized structures of the three polymorphs. The changes in spatial distribution of the 6s<sup>2</sup> electron density during the phase transitions were explored by means of the Wannier Function Centres (WFCs) derived from ab initio molecular dynamics trajectories. In the high-temperature hexagonal structure the 6s<sup>2</sup> electrons are spherically symmetric relative to the position of Pb atoms. At low temperature the maximum of 6s<sup>2</sup> electron density is displaced relative to the position of Pb atom contributing to the polar interaction in the monoclinic polymorphs.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370212/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1107/S2052520622006254\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520622006254","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Role of lone-pair electron localization in temperature-induced phase transitions in mimetite.
The crystal structure of mimetite Pb5(AsO4)3Cl, a phosphate with apatite structure-type has been investigated in situ at 123, 173, 273, 288, 353 and 393 K. A careful inspection of the diffraction pattern and subsequent structure refinements indicated that mimetite transforms from the monoclinic to the hexagonal polymorph with increasing temperature. At 123 K, a monoclinic superstructure, mimetite-2M, with cell parameters a = 20.4487 (9), b = 7.4362 (2), c = 20.4513 (9) Å, β = 119.953 (6)°, V = 2694.5 (2) Å3 and space group P21 was observed. From 173 to 353 K, the reflections of the supercell were evident only along one direction of the corresponding hexagonal apatite-cell and the structure transforms to the polymorph mimetite-M with space group P21/b and unit-cell parameters a = 10.2378 (3), b = 20.4573 (7), c = 7.4457 (2) Å, β = 120.039 (5)°, V = 1349.96 (9) Å3. Only at higher temperature, i.e. 393 K, does mimetite adopt the hexagonal space group P63/m characteristic of apatite structure-types. The role of the electron lone pairs of Pb atoms in the phase transition was investigated through the analysis of the electron localization function (ELF) calculated based on the DFT-geometry optimized structures of the three polymorphs. The changes in spatial distribution of the 6s2 electron density during the phase transitions were explored by means of the Wannier Function Centres (WFCs) derived from ab initio molecular dynamics trajectories. In the high-temperature hexagonal structure the 6s2 electrons are spherically symmetric relative to the position of Pb atoms. At low temperature the maximum of 6s2 electron density is displaced relative to the position of Pb atom contributing to the polar interaction in the monoclinic polymorphs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.