{"title":"三维可操纵近正交滤波器对。","authors":"Tommy M Tang, Hemant D Tagare","doi":"10.1137/21m143529x","DOIUrl":null,"url":null,"abstract":"<p><p>Steerable filter pairs that are near quadrature have many image processing applications. This paper proposes a new methodology for designing such filters. The key idea is to design steerable filters by minimizing a departure-from-quadrature function. These minimizing filter pairs are almost exactly in quadrature. The polar part of the filters is nonnegative, monotonic, and highly focused around an axis, and asymptotically the filters achieve exact quadrature. These results are established by exploiting a relation between the filters and generalized Hilbert matrices. These near-quadrature filters closely approximate three dimensional Gabor filters. We experimentally verify the asymptotic mathematical results and further demonstrate the use of these filter pairs by efficient calculation of local Fourier shell correlation of cryogenic electron microscopy.</p>","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"15 2","pages":"670-700"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683347/pdf/nihms-1847751.pdf","citationCount":"0","resultStr":"{\"title\":\"Steerable Near-Quadrature Filter Pairs in Three Dimensions.\",\"authors\":\"Tommy M Tang, Hemant D Tagare\",\"doi\":\"10.1137/21m143529x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Steerable filter pairs that are near quadrature have many image processing applications. This paper proposes a new methodology for designing such filters. The key idea is to design steerable filters by minimizing a departure-from-quadrature function. These minimizing filter pairs are almost exactly in quadrature. The polar part of the filters is nonnegative, monotonic, and highly focused around an axis, and asymptotically the filters achieve exact quadrature. These results are established by exploiting a relation between the filters and generalized Hilbert matrices. These near-quadrature filters closely approximate three dimensional Gabor filters. We experimentally verify the asymptotic mathematical results and further demonstrate the use of these filter pairs by efficient calculation of local Fourier shell correlation of cryogenic electron microscopy.</p>\",\"PeriodicalId\":49528,\"journal\":{\"name\":\"SIAM Journal on Imaging Sciences\",\"volume\":\"15 2\",\"pages\":\"670-700\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683347/pdf/nihms-1847751.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Imaging Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/21m143529x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/5/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m143529x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Steerable Near-Quadrature Filter Pairs in Three Dimensions.
Steerable filter pairs that are near quadrature have many image processing applications. This paper proposes a new methodology for designing such filters. The key idea is to design steerable filters by minimizing a departure-from-quadrature function. These minimizing filter pairs are almost exactly in quadrature. The polar part of the filters is nonnegative, monotonic, and highly focused around an axis, and asymptotically the filters achieve exact quadrature. These results are established by exploiting a relation between the filters and generalized Hilbert matrices. These near-quadrature filters closely approximate three dimensional Gabor filters. We experimentally verify the asymptotic mathematical results and further demonstrate the use of these filter pairs by efficient calculation of local Fourier shell correlation of cryogenic electron microscopy.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.