酒精饮料中的香气测定:基于绿色 MS 的样品制备方法

IF 6.9 2区 化学 Q1 SPECTROSCOPY Mass Spectrometry Reviews Pub Date : 2022-08-18 DOI:10.1002/mas.21802
Maurizio Piergiovanni, Fabio Gosetti, Priscilla Rocío-Bautista, Veronica Termopoli
{"title":"酒精饮料中的香气测定:基于绿色 MS 的样品制备方法","authors":"Maurizio Piergiovanni,&nbsp;Fabio Gosetti,&nbsp;Priscilla Rocío-Bautista,&nbsp;Veronica Termopoli","doi":"10.1002/mas.21802","DOIUrl":null,"url":null,"abstract":"<p>Aroma determination in alcoholic beverages has become a hot research topic due to the ongoing effort to obtain quality products, especially in a globalized market. Consumer satisfaction is mainly achieved by balancing several aroma compounds, which are mixtures of numerous volatile molecules enclosed in challenging matrices. Thus, sample preparation strategies for quality control and product development are required. They involve several steps including copious amounts of hazardous solvents or time-consuming procedures. This is bucking the trend of the ever-increasing pressure to reduce the environmental impact of analytical chemistry processes. Hence, the evolution of sample preparation procedures has directed towards miniaturized techniques to decrease or avoid the use of hazardous solvents and integrating sampling, extraction, and enrichment of the targeted analytes in fewer steps. Mass spectrometry coupled to gas or liquid chromatography is particularly well suited to address the complexity of these matrices. This review surveys advancements of green miniaturized techniques coupled to mass spectrometry applied on all categories of odor-active molecules in the most consumed alcoholic beverages: beer, wine, and spirits. The targeted literature consider progresses over the past 20 years.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 4","pages":"660-682"},"PeriodicalIF":6.9000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aroma determination in alcoholic beverages: Green MS-based sample preparation approaches\",\"authors\":\"Maurizio Piergiovanni,&nbsp;Fabio Gosetti,&nbsp;Priscilla Rocío-Bautista,&nbsp;Veronica Termopoli\",\"doi\":\"10.1002/mas.21802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aroma determination in alcoholic beverages has become a hot research topic due to the ongoing effort to obtain quality products, especially in a globalized market. Consumer satisfaction is mainly achieved by balancing several aroma compounds, which are mixtures of numerous volatile molecules enclosed in challenging matrices. Thus, sample preparation strategies for quality control and product development are required. They involve several steps including copious amounts of hazardous solvents or time-consuming procedures. This is bucking the trend of the ever-increasing pressure to reduce the environmental impact of analytical chemistry processes. Hence, the evolution of sample preparation procedures has directed towards miniaturized techniques to decrease or avoid the use of hazardous solvents and integrating sampling, extraction, and enrichment of the targeted analytes in fewer steps. Mass spectrometry coupled to gas or liquid chromatography is particularly well suited to address the complexity of these matrices. This review surveys advancements of green miniaturized techniques coupled to mass spectrometry applied on all categories of odor-active molecules in the most consumed alcoholic beverages: beer, wine, and spirits. The targeted literature consider progresses over the past 20 years.</p>\",\"PeriodicalId\":206,\"journal\":{\"name\":\"Mass Spectrometry Reviews\",\"volume\":\"43 4\",\"pages\":\"660-682\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mass Spectrometry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mas.21802\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass Spectrometry Reviews","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mas.21802","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

由于人们不断努力获得优质产品,特别是在全球化市场中,酒精饮料中香气的测定已成为一个热门研究课题。消费者的满意度主要是通过平衡几种香气化合物来实现的,而这些香气化合物是在具有挑战性的基质中包裹着大量挥发性分子的混合物。因此,需要为质量控制和产品开发制定样品制备策略。这些方法涉及多个步骤,包括大量有害溶剂或耗时的程序。这与日益增长的减少分析化学过程对环境影响的压力背道而驰。因此,样品制备程序的发展方向是微型化技术,以减少或避免使用有害溶剂,并在更少的步骤中完成目标分析物的取样、提取和富集。与气相色谱或液相色谱联用的质谱法尤其适合处理这些复杂的基质。本综述介绍了应用于啤酒、葡萄酒和烈酒等消费量最大的酒精饮料中各类气味活性分子的绿色微型化技术与质谱联用的进展情况。目标文献考虑了过去 20 年的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aroma determination in alcoholic beverages: Green MS-based sample preparation approaches

Aroma determination in alcoholic beverages has become a hot research topic due to the ongoing effort to obtain quality products, especially in a globalized market. Consumer satisfaction is mainly achieved by balancing several aroma compounds, which are mixtures of numerous volatile molecules enclosed in challenging matrices. Thus, sample preparation strategies for quality control and product development are required. They involve several steps including copious amounts of hazardous solvents or time-consuming procedures. This is bucking the trend of the ever-increasing pressure to reduce the environmental impact of analytical chemistry processes. Hence, the evolution of sample preparation procedures has directed towards miniaturized techniques to decrease or avoid the use of hazardous solvents and integrating sampling, extraction, and enrichment of the targeted analytes in fewer steps. Mass spectrometry coupled to gas or liquid chromatography is particularly well suited to address the complexity of these matrices. This review surveys advancements of green miniaturized techniques coupled to mass spectrometry applied on all categories of odor-active molecules in the most consumed alcoholic beverages: beer, wine, and spirits. The targeted literature consider progresses over the past 20 years.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mass Spectrometry Reviews
Mass Spectrometry Reviews 物理-光谱学
CiteScore
16.30
自引率
3.00%
发文量
56
期刊介绍: The aim of the journal Mass Spectrometry Reviews is to publish well-written reviews in selected topics in the various sub-fields of mass spectrometry as a means to summarize the research that has been performed in that area, to focus attention of other researchers, to critically review the published material, and to stimulate further research in that area. The scope of the published reviews include, but are not limited to topics, such as theoretical treatments, instrumental design, ionization methods, analyzers, detectors, application to the qualitative and quantitative analysis of various compounds or elements, basic ion chemistry and structure studies, ion energetic studies, and studies on biomolecules, polymers, etc.
期刊最新文献
Postionization Mass Spectrometry Imaging: Past, Present, and Future. Recent Advancements in the Characterization of D-Amino Acid and Isoaspartate Post-Translational Modifications. Bubble-Assisted Sample Preparation Techniques for Mass Spectrometry. A Perspective of Multi-Reflecting TOF MS. Mass Spectrometry Advances in Analysis of Glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1