水热氧化粪便的原型系统

IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research X Pub Date : 2022-12-01 DOI:10.1016/j.wroa.2022.100160
Joël Affolter , Thomas Brunner , Nicola Hagger , Frédéric Vogel
{"title":"水热氧化粪便的原型系统","authors":"Joël Affolter ,&nbsp;Thomas Brunner ,&nbsp;Nicola Hagger ,&nbsp;Frédéric Vogel","doi":"10.1016/j.wroa.2022.100160","DOIUrl":null,"url":null,"abstract":"<div><p>To ensure access to safe sanitation facilities in rural communities, cheap off-grid technologies need to be developed to substitute pit latrines and open defecation. In this study, we present a prototype system based on hydrothermal oxidation, which, under optimal conditions, converts a fecal sludge simulant almost completely to <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> and water, leaving behind only a carbon-poor aqueous phase with the minerals. The prototype has been designed to process the feces from two households. This technology does not only enable a fast and complete conversion, but is potentially also very energy efficient, as the feed does not require any pre-treatment or drying. The system was found to effectively remove 97–99% of the total organic carbon within a reaction time of 600 s under an external energy demand of roughly 4 kWh per kilogram of wet feces by using the oxygen in air as an oxidant. A total of ten experiments with varying injection pressure, total solids content of the feed, and residence time in the reactor were performed to find experimental settings with high conversion. Only when the residence time was decreased from 600 to 300 s did the conversion fall significantly below 97%. To reach a target value of 99.9% TOC conversion, the reactor temperature and/or the residence time must be increased further. To achieve a system applicable in regions with no connection to the energy grid, the thermal loss of the reactor insulation needs to be lowered further to achieve an overall thermally self-sustaining operation.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682356/pdf/","citationCount":"0","resultStr":"{\"title\":\"A prototype system for the hydrothermal oxidation of feces\",\"authors\":\"Joël Affolter ,&nbsp;Thomas Brunner ,&nbsp;Nicola Hagger ,&nbsp;Frédéric Vogel\",\"doi\":\"10.1016/j.wroa.2022.100160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To ensure access to safe sanitation facilities in rural communities, cheap off-grid technologies need to be developed to substitute pit latrines and open defecation. In this study, we present a prototype system based on hydrothermal oxidation, which, under optimal conditions, converts a fecal sludge simulant almost completely to <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> and water, leaving behind only a carbon-poor aqueous phase with the minerals. The prototype has been designed to process the feces from two households. This technology does not only enable a fast and complete conversion, but is potentially also very energy efficient, as the feed does not require any pre-treatment or drying. The system was found to effectively remove 97–99% of the total organic carbon within a reaction time of 600 s under an external energy demand of roughly 4 kWh per kilogram of wet feces by using the oxygen in air as an oxidant. A total of ten experiments with varying injection pressure, total solids content of the feed, and residence time in the reactor were performed to find experimental settings with high conversion. Only when the residence time was decreased from 600 to 300 s did the conversion fall significantly below 97%. To reach a target value of 99.9% TOC conversion, the reactor temperature and/or the residence time must be increased further. To achieve a system applicable in regions with no connection to the energy grid, the thermal loss of the reactor insulation needs to be lowered further to achieve an overall thermally self-sustaining operation.</p></div>\",\"PeriodicalId\":52198,\"journal\":{\"name\":\"Water Research X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research X\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589914722000305\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914722000305","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

为了确保农村社区获得安全的卫生设施,需要开发廉价的离网技术,以取代坑式厕所和露天排便。在这项研究中,我们提出了一个基于水热氧化的原型系统,该系统在最佳条件下,将粪便污泥模拟物几乎完全转化为二氧化碳和水,只留下含有矿物质的低碳水相。原型机被设计用来处理两户人家的粪便。该技术不仅可以实现快速和完全的转化,而且还具有潜在的节能性,因为进料不需要任何预处理或干燥。实验发现,该系统利用空气中的氧气作为氧化剂,在600 s的反应时间内,在每公斤湿粪便约4千瓦时的外部能量需求下,有效去除总有机碳的97-99%。在不同的注入压力、进料总固体含量和反应器停留时间下,共进行了10次实验,以找到高转化率的实验设置。只有当停留时间从600秒减少到300秒时,转化率才明显下降到97%以下。为了达到99.9% TOC转化率的目标值,必须进一步提高反应器温度和/或停留时间。为了使系统适用于没有接入电网的地区,需要进一步降低反应堆绝缘的热损失,以实现整体热自维持运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A prototype system for the hydrothermal oxidation of feces

To ensure access to safe sanitation facilities in rural communities, cheap off-grid technologies need to be developed to substitute pit latrines and open defecation. In this study, we present a prototype system based on hydrothermal oxidation, which, under optimal conditions, converts a fecal sludge simulant almost completely to CO2 and water, leaving behind only a carbon-poor aqueous phase with the minerals. The prototype has been designed to process the feces from two households. This technology does not only enable a fast and complete conversion, but is potentially also very energy efficient, as the feed does not require any pre-treatment or drying. The system was found to effectively remove 97–99% of the total organic carbon within a reaction time of 600 s under an external energy demand of roughly 4 kWh per kilogram of wet feces by using the oxygen in air as an oxidant. A total of ten experiments with varying injection pressure, total solids content of the feed, and residence time in the reactor were performed to find experimental settings with high conversion. Only when the residence time was decreased from 600 to 300 s did the conversion fall significantly below 97%. To reach a target value of 99.9% TOC conversion, the reactor temperature and/or the residence time must be increased further. To achieve a system applicable in regions with no connection to the energy grid, the thermal loss of the reactor insulation needs to be lowered further to achieve an overall thermally self-sustaining operation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Research X
Water Research X Environmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍: Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.
期刊最新文献
Characterization of EPS subfractions from a mixed culture predominated by partial-denitrification functional bacteria Effectiveness of cyclic treatment of municipal wastewater by Tetradesmus obliquus – Loofah biofilm, its internal community changes and potential for resource utilization Enhanced nitrogen removal for low C/N wastewater via preventing futile carbon oxidation and augmenting anammox Evaluating energy balance and environmental footprint of sludge management in BRICS countries Pharmaceuticals in raw and treated water from drinking water treatment plants nationwide: Insights into their sources and exposure risk assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1