{"title":"单生物素化蛋白拴在微球上检测抗原特异性血清抗体。","authors":"Caleb S Whitley, Thomas C Mitchell","doi":"10.14440/jbm.2022.390","DOIUrl":null,"url":null,"abstract":"<p><p>Surface modified microspheres have been leveraged as a useful way to immobilize antigen for serological studies. The use of carboxyl modified microspheres for this purpose is well-established, but commonly associated with technical challenges. Streptavidin modified microspheres require little technical expertise and thus address some of the shortcomings of carboxyl microspheres. An additional feature of streptavidin microspheres is the use of mono-biotinylated proteins, which contain a single biotinylation motif at the C-terminus. However, the relative performance of streptavidin and carboxyl microspheres is unknown. Here, we performed a head-to-head comparison of streptavidin and carboxyl microspheres. We compared antigen binding, orientation, and staining quality and found that both microspheres perform similarly based on these defined parameters. We also evaluated the utility of streptavidin microspheres bound to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD), to reliably detect RBD-specific IgG1, IgG3, and IgA1 produced in individuals recently immunized with Pfizer/BioNTech mRNA coronavirus disease (COVID) vaccine as 'proof-of-concept'. We provide evidence that each of the antibody targets are detectable in serum using RBD-coated microspheres, Ig-specific 'detector' monoclonal antibodies (mAbs), and flow cytometry. We found that cross-reactivity of the detector mAbs can be minimized by antibody titration to improve differentiation between IgG1 and IgG3. We also coated streptavidin microspheres with SARS-CoV-2 delta variant RBD to determine if the streptavidin microsphere approach revealed any differences in binding of immune serum antibodies to wild-type (Wuhan) versus variant RBD (Delta). Overall, our results show that streptavidin microspheres loaded with mono-biotinylated antigen is a robust alternative to chemically cross-linking antigen to carboxyl microspheres for use in serological assays.</p>","PeriodicalId":73618,"journal":{"name":"Journal of biological methods","volume":"8 ","pages":"e164"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d7/01/jbm-8-specissue-e164.PMC9682163.pdf","citationCount":"0","resultStr":"{\"title\":\"Monobiotinylated Proteins Tethered to Microspheres for Detection of Antigen-Specific Serum Antibodies.\",\"authors\":\"Caleb S Whitley, Thomas C Mitchell\",\"doi\":\"10.14440/jbm.2022.390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surface modified microspheres have been leveraged as a useful way to immobilize antigen for serological studies. The use of carboxyl modified microspheres for this purpose is well-established, but commonly associated with technical challenges. Streptavidin modified microspheres require little technical expertise and thus address some of the shortcomings of carboxyl microspheres. An additional feature of streptavidin microspheres is the use of mono-biotinylated proteins, which contain a single biotinylation motif at the C-terminus. However, the relative performance of streptavidin and carboxyl microspheres is unknown. Here, we performed a head-to-head comparison of streptavidin and carboxyl microspheres. We compared antigen binding, orientation, and staining quality and found that both microspheres perform similarly based on these defined parameters. We also evaluated the utility of streptavidin microspheres bound to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD), to reliably detect RBD-specific IgG1, IgG3, and IgA1 produced in individuals recently immunized with Pfizer/BioNTech mRNA coronavirus disease (COVID) vaccine as 'proof-of-concept'. We provide evidence that each of the antibody targets are detectable in serum using RBD-coated microspheres, Ig-specific 'detector' monoclonal antibodies (mAbs), and flow cytometry. We found that cross-reactivity of the detector mAbs can be minimized by antibody titration to improve differentiation between IgG1 and IgG3. We also coated streptavidin microspheres with SARS-CoV-2 delta variant RBD to determine if the streptavidin microsphere approach revealed any differences in binding of immune serum antibodies to wild-type (Wuhan) versus variant RBD (Delta). Overall, our results show that streptavidin microspheres loaded with mono-biotinylated antigen is a robust alternative to chemically cross-linking antigen to carboxyl microspheres for use in serological assays.</p>\",\"PeriodicalId\":73618,\"journal\":{\"name\":\"Journal of biological methods\",\"volume\":\"8 \",\"pages\":\"e164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d7/01/jbm-8-specissue-e164.PMC9682163.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biological methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14440/jbm.2022.390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biological methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14440/jbm.2022.390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Monobiotinylated Proteins Tethered to Microspheres for Detection of Antigen-Specific Serum Antibodies.
Surface modified microspheres have been leveraged as a useful way to immobilize antigen for serological studies. The use of carboxyl modified microspheres for this purpose is well-established, but commonly associated with technical challenges. Streptavidin modified microspheres require little technical expertise and thus address some of the shortcomings of carboxyl microspheres. An additional feature of streptavidin microspheres is the use of mono-biotinylated proteins, which contain a single biotinylation motif at the C-terminus. However, the relative performance of streptavidin and carboxyl microspheres is unknown. Here, we performed a head-to-head comparison of streptavidin and carboxyl microspheres. We compared antigen binding, orientation, and staining quality and found that both microspheres perform similarly based on these defined parameters. We also evaluated the utility of streptavidin microspheres bound to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD), to reliably detect RBD-specific IgG1, IgG3, and IgA1 produced in individuals recently immunized with Pfizer/BioNTech mRNA coronavirus disease (COVID) vaccine as 'proof-of-concept'. We provide evidence that each of the antibody targets are detectable in serum using RBD-coated microspheres, Ig-specific 'detector' monoclonal antibodies (mAbs), and flow cytometry. We found that cross-reactivity of the detector mAbs can be minimized by antibody titration to improve differentiation between IgG1 and IgG3. We also coated streptavidin microspheres with SARS-CoV-2 delta variant RBD to determine if the streptavidin microsphere approach revealed any differences in binding of immune serum antibodies to wild-type (Wuhan) versus variant RBD (Delta). Overall, our results show that streptavidin microspheres loaded with mono-biotinylated antigen is a robust alternative to chemically cross-linking antigen to carboxyl microspheres for use in serological assays.