牙种植体初代稳定性的宏观几何分化:体外研究。

IF 1.7 4区 医学 Q3 DENTISTRY, ORAL SURGERY & MEDICINE International Journal of Oral & Maxillofacial Implants Pub Date : 2022-11-01 DOI:10.11607/jomi.9656
Sandra K Al-Tarawneh, Ghadeer Thalji, Lyndon F Cooper
{"title":"牙种植体初代稳定性的宏观几何分化:体外研究。","authors":"Sandra K Al-Tarawneh,&nbsp;Ghadeer Thalji,&nbsp;Lyndon F Cooper","doi":"10.11607/jomi.9656","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate an alternative cutting, progressive thread design to increase primary stability in low-density bone.</p><p><strong>Materials and methods: </strong>Four different implants with different macrogeometries (Nobel Biocare Active [NA] Internal RP implants [4.3 × 11.5 mm], Straumann BLX Roxolid RB implants [4.5 × 10 mm], Astra Tech Implant EV implants [4.2 × 11 mm], and PrimeTaper [PT 4.2 × 11 mm]) were placed in simulated osteotomies and extraction sockets in synthetic bone (Sawbones) according to the manufacturers' protocol. Insertion torque and ISQ values were measured using Implantmed Plus motor and Ostell IDX, respectively. Insertion time was recorded. Average values were calculated and compared using ANOVA and Tukey test.</p><p><strong>Results: </strong>Insertion torque (range: 5 to 44 Ncm) increased with increasing synthetic bone density for all implants. Different ISQ values in synthetic low-density bone were not observed in higher-density synthetic bone. Insertion torque of all implants was reduced when implants were placed in simulated sockets compared to simulated osteotomies. In both low-density and higher-density synthetic bone, the primary stability of PrimeTaper implants with cutting and progressive thread design was equivalent to that of the Nobel Biocare NobelActive implant with compressive thread design and greater than the BLX implant with compressive thread design.</p><p><strong>Conclusion: </strong>Different implant macrogeometries obtain relatively high primary stability in low-density bone when measured by ISQ. Doublethread implant designs reduce insertion times in higher-density bone. A cutting and progressive compressing thread design provides density-sensing performance compared to aggressive condensing thread designs. This macrogeometry can achieve high primary stability associated with modest insertion torque compared to aggressive threaded implant designs known to attain the highest insertion torque. The presence of multiple cutting threads may offer advantages in obtaining primary stability in low-density bone.</p>","PeriodicalId":50298,"journal":{"name":"International Journal of Oral & Maxillofacial Implants","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Macrogeometric Differentiation of Dental Implant Primary Stability: An In Vitro Study.\",\"authors\":\"Sandra K Al-Tarawneh,&nbsp;Ghadeer Thalji,&nbsp;Lyndon F Cooper\",\"doi\":\"10.11607/jomi.9656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate an alternative cutting, progressive thread design to increase primary stability in low-density bone.</p><p><strong>Materials and methods: </strong>Four different implants with different macrogeometries (Nobel Biocare Active [NA] Internal RP implants [4.3 × 11.5 mm], Straumann BLX Roxolid RB implants [4.5 × 10 mm], Astra Tech Implant EV implants [4.2 × 11 mm], and PrimeTaper [PT 4.2 × 11 mm]) were placed in simulated osteotomies and extraction sockets in synthetic bone (Sawbones) according to the manufacturers' protocol. Insertion torque and ISQ values were measured using Implantmed Plus motor and Ostell IDX, respectively. Insertion time was recorded. Average values were calculated and compared using ANOVA and Tukey test.</p><p><strong>Results: </strong>Insertion torque (range: 5 to 44 Ncm) increased with increasing synthetic bone density for all implants. Different ISQ values in synthetic low-density bone were not observed in higher-density synthetic bone. Insertion torque of all implants was reduced when implants were placed in simulated sockets compared to simulated osteotomies. In both low-density and higher-density synthetic bone, the primary stability of PrimeTaper implants with cutting and progressive thread design was equivalent to that of the Nobel Biocare NobelActive implant with compressive thread design and greater than the BLX implant with compressive thread design.</p><p><strong>Conclusion: </strong>Different implant macrogeometries obtain relatively high primary stability in low-density bone when measured by ISQ. Doublethread implant designs reduce insertion times in higher-density bone. A cutting and progressive compressing thread design provides density-sensing performance compared to aggressive condensing thread designs. This macrogeometry can achieve high primary stability associated with modest insertion torque compared to aggressive threaded implant designs known to attain the highest insertion torque. The presence of multiple cutting threads may offer advantages in obtaining primary stability in low-density bone.</p>\",\"PeriodicalId\":50298,\"journal\":{\"name\":\"International Journal of Oral & Maxillofacial Implants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Oral & Maxillofacial Implants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.11607/jomi.9656\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral & Maxillofacial Implants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11607/jomi.9656","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 4

摘要

目的:评估一种可选择的切削渐进式螺纹设计,以增加低密度骨的初级稳定性。材料和方法:根据制造商的方案,将四种不同宏观几何形状的种植体(Nobel Biocare Active [NA] Internal RP种植体[4.3 × 11.5 mm], Straumann BLX Roxolid RB种植体[4.5 × 10 mm], Astra Tech Implant EV种植体[4.2 × 11 mm]和PrimeTaper [PT 4.2 × 11 mm])放置在人工骨(Sawbones)的模拟截骨和拔牙槽中。分别使用implant Plus电机和Ostell IDX测量插入扭矩和ISQ值。记录插入时间。采用方差分析和Tukey检验计算平均值并进行比较。结果:所有种植体的植入扭矩(范围:5 ~ 44 Ncm)随合成骨密度的增加而增加。低密度合成骨的ISQ值与高密度合成骨没有差异。与模拟截骨术相比,将假体放置在模拟骨槽内时,所有假体的插入扭矩都降低了。在低密度和高密度合成骨中,具有切割和渐进式螺纹设计的PrimeTaper种植体的初级稳定性与具有压缩螺纹设计的Nobel Biocare NobelActive种植体相当,高于具有压缩螺纹设计的BLX种植体。结论:ISQ测量低密度骨时,不同种植体的宏观几何形状具有较高的初级稳定性。双螺纹种植体设计减少了高密度骨的植入时间。与具有侵略性的冷凝螺纹设计相比,切削和渐进式压缩螺纹设计提供了密度传感性能。与已知的可获得最高插入扭矩的侵略性螺纹植入物设计相比,这种宏观几何结构可以获得较高的初级稳定性和适度的插入扭矩。在低密度骨中,多个切削螺纹的存在有助于获得初步的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Macrogeometric Differentiation of Dental Implant Primary Stability: An In Vitro Study.

Purpose: To evaluate an alternative cutting, progressive thread design to increase primary stability in low-density bone.

Materials and methods: Four different implants with different macrogeometries (Nobel Biocare Active [NA] Internal RP implants [4.3 × 11.5 mm], Straumann BLX Roxolid RB implants [4.5 × 10 mm], Astra Tech Implant EV implants [4.2 × 11 mm], and PrimeTaper [PT 4.2 × 11 mm]) were placed in simulated osteotomies and extraction sockets in synthetic bone (Sawbones) according to the manufacturers' protocol. Insertion torque and ISQ values were measured using Implantmed Plus motor and Ostell IDX, respectively. Insertion time was recorded. Average values were calculated and compared using ANOVA and Tukey test.

Results: Insertion torque (range: 5 to 44 Ncm) increased with increasing synthetic bone density for all implants. Different ISQ values in synthetic low-density bone were not observed in higher-density synthetic bone. Insertion torque of all implants was reduced when implants were placed in simulated sockets compared to simulated osteotomies. In both low-density and higher-density synthetic bone, the primary stability of PrimeTaper implants with cutting and progressive thread design was equivalent to that of the Nobel Biocare NobelActive implant with compressive thread design and greater than the BLX implant with compressive thread design.

Conclusion: Different implant macrogeometries obtain relatively high primary stability in low-density bone when measured by ISQ. Doublethread implant designs reduce insertion times in higher-density bone. A cutting and progressive compressing thread design provides density-sensing performance compared to aggressive condensing thread designs. This macrogeometry can achieve high primary stability associated with modest insertion torque compared to aggressive threaded implant designs known to attain the highest insertion torque. The presence of multiple cutting threads may offer advantages in obtaining primary stability in low-density bone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.00%
发文量
115
审稿时长
6 months
期刊介绍: Edited by Steven E. Eckert, DDS, MS ISSN (Print): 0882-2786 ISSN (Online): 1942-4434 This highly regarded, often-cited journal integrates clinical and scientific data to improve methods and results of oral and maxillofacial implant therapy. It presents pioneering research, technology, clinical applications, reviews of the literature, seminal studies, emerging technology, position papers, and consensus studies, as well as the many clinical and therapeutic innovations that ensue as a result of these efforts. The editorial board is composed of recognized opinion leaders in their respective areas of expertise and reflects the international reach of the journal. Under their leadership, JOMI maintains its strong scientific integrity while expanding its influence within the field of implant dentistry. JOMI’s popular regular feature "Thematic Abstract Review" presents a review of abstracts of recently published articles on a specific topical area of interest each issue.
期刊最新文献
Peri-implant Parameters of Dental Implants Inserted in Prefabricated Microvascular Fibular Flaps: A Retrospective Study. Different Surgical Techniques in the All-on-4 Treatment Concept: Evaluation of the Stress Distribution Created in Implant and Peripheral Bone with Finite Element Analysis. Augmentation of Peri-implant Keratinized Mucosa Using a Combination of Free Gingival Graft Strip with Xenogeneic Collagen Matrix or Free Gingival Graft Alone: A Randomized Controlled Study. Efficacy of Labial Split-Thickness Eversion Periosteoplasty for Soft Tissue Management in Posterior Mandibular Horizontal Ridge Augmentation Procedures: A Prospective Clinical Study. Porcine Resorbable Collagen Matrix Shows Good Incorporation of Liquid Platelet-Rich Fibrin In Vitro.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1