Masoumeh Shirozhan, Naushad A Mamode Khan, Célestin C Kokonendji
{"title":"平衡离散三重态Lindley模型及其INAR(1)扩展:性质和COVID-19应用。","authors":"Masoumeh Shirozhan, Naushad A Mamode Khan, Célestin C Kokonendji","doi":"10.1515/ijb-2022-0001","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a new flexible discrete triplet Lindley model that is constructed from the balanced discretization principle of the extended Lindley distribution. This model has several appealing statistical properties in terms of providing exact and closed form moment expressions and handling all forms of dispersion. Due to these, this paper explores further the usage of the discrete triplet Lindley as an innovation distribution in the simple integer-valued autoregressive process (INAR(1)). This subsequently allows for the modeling of count time series observations. In this context, a novel INAR(1) process is developed under mixed Binomial and the Pegram thinning operators. The model parameters of the INAR(1) process are estimated using the conditional maximum likelihood and Yule-Walker approaches. Some Monte Carlo simulation experiments are executed to assess the consistency of the estimators under the two estimation approaches. Interestingly, the proposed INAR(1) process is applied to analyze the COVID-19 cases and death series of different countries where it yields reliable parameter estimates and suitable forecasts via the modified Sieve bootstrap technique. On the other side, the new INAR(1) with discrete triplet Lindley innovations competes comfortably with other established INAR(1)s in the literature.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The balanced discrete triplet Lindley model and its INAR(1) extension: properties and COVID-19 applications.\",\"authors\":\"Masoumeh Shirozhan, Naushad A Mamode Khan, Célestin C Kokonendji\",\"doi\":\"10.1515/ijb-2022-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a new flexible discrete triplet Lindley model that is constructed from the balanced discretization principle of the extended Lindley distribution. This model has several appealing statistical properties in terms of providing exact and closed form moment expressions and handling all forms of dispersion. Due to these, this paper explores further the usage of the discrete triplet Lindley as an innovation distribution in the simple integer-valued autoregressive process (INAR(1)). This subsequently allows for the modeling of count time series observations. In this context, a novel INAR(1) process is developed under mixed Binomial and the Pegram thinning operators. The model parameters of the INAR(1) process are estimated using the conditional maximum likelihood and Yule-Walker approaches. Some Monte Carlo simulation experiments are executed to assess the consistency of the estimators under the two estimation approaches. Interestingly, the proposed INAR(1) process is applied to analyze the COVID-19 cases and death series of different countries where it yields reliable parameter estimates and suitable forecasts via the modified Sieve bootstrap technique. On the other side, the new INAR(1) with discrete triplet Lindley innovations competes comfortably with other established INAR(1)s in the literature.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2022-0001\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2022-0001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The balanced discrete triplet Lindley model and its INAR(1) extension: properties and COVID-19 applications.
This paper proposes a new flexible discrete triplet Lindley model that is constructed from the balanced discretization principle of the extended Lindley distribution. This model has several appealing statistical properties in terms of providing exact and closed form moment expressions and handling all forms of dispersion. Due to these, this paper explores further the usage of the discrete triplet Lindley as an innovation distribution in the simple integer-valued autoregressive process (INAR(1)). This subsequently allows for the modeling of count time series observations. In this context, a novel INAR(1) process is developed under mixed Binomial and the Pegram thinning operators. The model parameters of the INAR(1) process are estimated using the conditional maximum likelihood and Yule-Walker approaches. Some Monte Carlo simulation experiments are executed to assess the consistency of the estimators under the two estimation approaches. Interestingly, the proposed INAR(1) process is applied to analyze the COVID-19 cases and death series of different countries where it yields reliable parameter estimates and suitable forecasts via the modified Sieve bootstrap technique. On the other side, the new INAR(1) with discrete triplet Lindley innovations competes comfortably with other established INAR(1)s in the literature.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.