Ji Young Lee, Jeong Hwan Je, Dae Hyun Kim, Sang Woon Chung, Yani Zou, Nam Deuk Kim, Mie Ae Yoo, Hyung Suck Baik, Byung Pal Yu, Hae Young Chung
{"title":"4-羟基己烯醛诱导内皮细胞凋亡。","authors":"Ji Young Lee, Jeong Hwan Je, Dae Hyun Kim, Sang Woon Chung, Yani Zou, Nam Deuk Kim, Mie Ae Yoo, Hyung Suck Baik, Byung Pal Yu, Hae Young Chung","doi":"10.1111/j.1432-1033.2004.04042.x","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid peroxidation and its products such as 4-hydroxy-2-nonenal (HNE) and 4-hydroxyhexenal (HHE) are known to affect redox balance during aging and various degenerative processes, including vascular dysfunction. Deterioration of the endothelial cells that line the vascular wall is known to be an underlying cause of vascular dysfunction. At present, little is known about the mechanism by which HHE induces endothelial cell death (i.e. apoptosis), although HNE-induced apoptotic cell death has been reported. The aim of this study was to determine whether apoptosis induced by HHE in endothelial cells involves peroxynitrite (ONOO(-)). Our results show that in endothelial cells HHE triggers apoptotic cell death by inducing apoptotic Bax coupled with a decrease in anti-apoptotic Bcl-2. Results show that HHE induces reactive oxygen species (ROS), nitric oxide, and ONOO(-) generation, leading to redox imbalance. Furthermore, the antioxidant N-acetyl cysteine, ROS scavenger, and penicillamine, an ONOO(-) scavenger, were found to block HHE-mediated apoptosis. We used confocal laser microscopy to estimate the ability of these inhibitors to attenuate HHE-induced intracellular ONOO(-) levels thus confirming the oxidative mediation of apoptosis in endothelial cells. These findings strongly suggest that accumulated HHE triggers reactive species-mediated endothelial apoptosis, leading to vascular dysfunction as well as vascular aging. During aging, increased lipid peroxidation and its associated production of HHE may exacerbate the weakened redox balance, leading to various chronic degenerative processes including vascular dysfunction.</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"271 7","pages":"1339-47"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/j.1432-1033.2004.04042.x","citationCount":"53","resultStr":"{\"title\":\"Induction of endothelial apoptosis by 4-hydroxyhexenal.\",\"authors\":\"Ji Young Lee, Jeong Hwan Je, Dae Hyun Kim, Sang Woon Chung, Yani Zou, Nam Deuk Kim, Mie Ae Yoo, Hyung Suck Baik, Byung Pal Yu, Hae Young Chung\",\"doi\":\"10.1111/j.1432-1033.2004.04042.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipid peroxidation and its products such as 4-hydroxy-2-nonenal (HNE) and 4-hydroxyhexenal (HHE) are known to affect redox balance during aging and various degenerative processes, including vascular dysfunction. Deterioration of the endothelial cells that line the vascular wall is known to be an underlying cause of vascular dysfunction. At present, little is known about the mechanism by which HHE induces endothelial cell death (i.e. apoptosis), although HNE-induced apoptotic cell death has been reported. The aim of this study was to determine whether apoptosis induced by HHE in endothelial cells involves peroxynitrite (ONOO(-)). Our results show that in endothelial cells HHE triggers apoptotic cell death by inducing apoptotic Bax coupled with a decrease in anti-apoptotic Bcl-2. Results show that HHE induces reactive oxygen species (ROS), nitric oxide, and ONOO(-) generation, leading to redox imbalance. Furthermore, the antioxidant N-acetyl cysteine, ROS scavenger, and penicillamine, an ONOO(-) scavenger, were found to block HHE-mediated apoptosis. We used confocal laser microscopy to estimate the ability of these inhibitors to attenuate HHE-induced intracellular ONOO(-) levels thus confirming the oxidative mediation of apoptosis in endothelial cells. These findings strongly suggest that accumulated HHE triggers reactive species-mediated endothelial apoptosis, leading to vascular dysfunction as well as vascular aging. During aging, increased lipid peroxidation and its associated production of HHE may exacerbate the weakened redox balance, leading to various chronic degenerative processes including vascular dysfunction.</p>\",\"PeriodicalId\":11817,\"journal\":{\"name\":\"European journal of biochemistry\",\"volume\":\"271 7\",\"pages\":\"1339-47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/j.1432-1033.2004.04042.x\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/j.1432-1033.2004.04042.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1432-1033.2004.04042.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Induction of endothelial apoptosis by 4-hydroxyhexenal.
Lipid peroxidation and its products such as 4-hydroxy-2-nonenal (HNE) and 4-hydroxyhexenal (HHE) are known to affect redox balance during aging and various degenerative processes, including vascular dysfunction. Deterioration of the endothelial cells that line the vascular wall is known to be an underlying cause of vascular dysfunction. At present, little is known about the mechanism by which HHE induces endothelial cell death (i.e. apoptosis), although HNE-induced apoptotic cell death has been reported. The aim of this study was to determine whether apoptosis induced by HHE in endothelial cells involves peroxynitrite (ONOO(-)). Our results show that in endothelial cells HHE triggers apoptotic cell death by inducing apoptotic Bax coupled with a decrease in anti-apoptotic Bcl-2. Results show that HHE induces reactive oxygen species (ROS), nitric oxide, and ONOO(-) generation, leading to redox imbalance. Furthermore, the antioxidant N-acetyl cysteine, ROS scavenger, and penicillamine, an ONOO(-) scavenger, were found to block HHE-mediated apoptosis. We used confocal laser microscopy to estimate the ability of these inhibitors to attenuate HHE-induced intracellular ONOO(-) levels thus confirming the oxidative mediation of apoptosis in endothelial cells. These findings strongly suggest that accumulated HHE triggers reactive species-mediated endothelial apoptosis, leading to vascular dysfunction as well as vascular aging. During aging, increased lipid peroxidation and its associated production of HHE may exacerbate the weakened redox balance, leading to various chronic degenerative processes including vascular dysfunction.