{"title":"最近的抗癌细胞毒性药物。","authors":"Paolo Cozzi, Nicola Mongelli, Antonino Suarato","doi":"10.2174/1568011043482061","DOIUrl":null,"url":null,"abstract":"<p><p>In spite of the impressive progress in diagnosis, surgery and therapy that occurred since the Sixties, the overall cancer mortality is still high and the medical need is largely unmet. A number of innovative strategies, aimed to target malignant abnormalities of tumor cells are in development and begin to give important results. In alternative, angiogenesis inhibition has been addressed with the aim to limit the tumor ability to grow and metastasize. However, it will likely take some years to fully define the therapeutic role of different innovative drugs. Therefore, cytotoxic drugs will continue to represent a chief part of the therapy in the forthcoming years, possibly in combination with innovative agents addressing molecular targets. Most important traditional chemotherapeutic drugs or investigational anticancer agents were derived from natural sources also through synthetic structural modifications. In the Nineties, taxanes and camptothecins represented important success stories of this approach, while among DNA interacting agents anthracyclines continued to represent a structural platform for discovering new drugs and DNA minor groove binders represented a new field of investigation. Combinatorial chemistry combined with high-throughput screening programs are an important source of totally synthetic new agents, however, it should not be disregarded the fact that nature already performed combinatorial chemistry and leads selection through the ages. New natural or semisynthetic agents acting as tubulin stabilizers or DNA interactive agents of various mechanisms of action are presently investigated and will probably continue to give important contribution to cancer therapy in the near future. In this review, the medicinal chemistry and the development status of these anticancer cytotoxic agents are focused and discussed.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"4 2","pages":"93-121"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Recent anticancer cytotoxic agents.\",\"authors\":\"Paolo Cozzi, Nicola Mongelli, Antonino Suarato\",\"doi\":\"10.2174/1568011043482061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In spite of the impressive progress in diagnosis, surgery and therapy that occurred since the Sixties, the overall cancer mortality is still high and the medical need is largely unmet. A number of innovative strategies, aimed to target malignant abnormalities of tumor cells are in development and begin to give important results. In alternative, angiogenesis inhibition has been addressed with the aim to limit the tumor ability to grow and metastasize. However, it will likely take some years to fully define the therapeutic role of different innovative drugs. Therefore, cytotoxic drugs will continue to represent a chief part of the therapy in the forthcoming years, possibly in combination with innovative agents addressing molecular targets. Most important traditional chemotherapeutic drugs or investigational anticancer agents were derived from natural sources also through synthetic structural modifications. In the Nineties, taxanes and camptothecins represented important success stories of this approach, while among DNA interacting agents anthracyclines continued to represent a structural platform for discovering new drugs and DNA minor groove binders represented a new field of investigation. Combinatorial chemistry combined with high-throughput screening programs are an important source of totally synthetic new agents, however, it should not be disregarded the fact that nature already performed combinatorial chemistry and leads selection through the ages. New natural or semisynthetic agents acting as tubulin stabilizers or DNA interactive agents of various mechanisms of action are presently investigated and will probably continue to give important contribution to cancer therapy in the near future. In this review, the medicinal chemistry and the development status of these anticancer cytotoxic agents are focused and discussed.</p>\",\"PeriodicalId\":10914,\"journal\":{\"name\":\"Current medicinal chemistry. Anti-cancer agents\",\"volume\":\"4 2\",\"pages\":\"93-121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry. Anti-cancer agents\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1568011043482061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry. Anti-cancer agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1568011043482061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In spite of the impressive progress in diagnosis, surgery and therapy that occurred since the Sixties, the overall cancer mortality is still high and the medical need is largely unmet. A number of innovative strategies, aimed to target malignant abnormalities of tumor cells are in development and begin to give important results. In alternative, angiogenesis inhibition has been addressed with the aim to limit the tumor ability to grow and metastasize. However, it will likely take some years to fully define the therapeutic role of different innovative drugs. Therefore, cytotoxic drugs will continue to represent a chief part of the therapy in the forthcoming years, possibly in combination with innovative agents addressing molecular targets. Most important traditional chemotherapeutic drugs or investigational anticancer agents were derived from natural sources also through synthetic structural modifications. In the Nineties, taxanes and camptothecins represented important success stories of this approach, while among DNA interacting agents anthracyclines continued to represent a structural platform for discovering new drugs and DNA minor groove binders represented a new field of investigation. Combinatorial chemistry combined with high-throughput screening programs are an important source of totally synthetic new agents, however, it should not be disregarded the fact that nature already performed combinatorial chemistry and leads selection through the ages. New natural or semisynthetic agents acting as tubulin stabilizers or DNA interactive agents of various mechanisms of action are presently investigated and will probably continue to give important contribution to cancer therapy in the near future. In this review, the medicinal chemistry and the development status of these anticancer cytotoxic agents are focused and discussed.