{"title":"具有过氧化物酶活性的催化抗体的新活性:Fe(II)-RNO复合物的形成和硫化物的立体选择性氧化。","authors":"Rémy Ricoux, Edyta Lukowska, Fabio Pezzotti, Jean-Pierre Mahy","doi":"10.1111/j.1432-1033.2004.04032.x","DOIUrl":null,"url":null,"abstract":"<p><p>In order to estimate the size of the cavity remaining around the heme of the 3A3-microperoxidase 8 (MP8) hemoabzyme, the formation of 3A3-MP8-Fe(II)-nitrosoalkane complexes upon oxidation of N-monosubstituted hydroxylamines was examined. This constituted a new reaction for hemoabzymes and is the first example of fully characterized Fe(II)-metabolite complexes of antibody-porphyrin. Also, via a comparison of the reactions with N-substituted hydroxylamines of various size and hydrophobicity, antibody 3A3 was confirmed to bring about a partial steric hindrance on the distal face of MP8. Subsequently, the influence of the antibody on the stereoselectivity of the S-oxidation of sulfides was examined. Our results showed that MP8 alone and the antibody-MP8 complex catalyze the oxidation of thioanisole by H(2)O(2) and tert-butyl hydroperoxide, following a peroxidase-like two-step oxygen-transfer mechanism involving a radical-cation intermediate. The best system, associating H(2)O(2) as oxidant and 3A3-MP8 as a catalyst, in the presence of 5% tert-butyl alcohol, led to the stereoselective S-oxidation of thioanisole with a 45% enantiomeric excess in favour of the R isomer. This constitutes the highest enantiomeric excess reported to date for the oxidation of sulfides catalyzed by hemoabzymes.</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"271 7","pages":"1277-83"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/j.1432-1033.2004.04032.x","citationCount":"41","resultStr":"{\"title\":\"New activities of a catalytic antibody with a peroxidase activity: formation of Fe(II)-RNO complexes and stereoselective oxidation of sulfides.\",\"authors\":\"Rémy Ricoux, Edyta Lukowska, Fabio Pezzotti, Jean-Pierre Mahy\",\"doi\":\"10.1111/j.1432-1033.2004.04032.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to estimate the size of the cavity remaining around the heme of the 3A3-microperoxidase 8 (MP8) hemoabzyme, the formation of 3A3-MP8-Fe(II)-nitrosoalkane complexes upon oxidation of N-monosubstituted hydroxylamines was examined. This constituted a new reaction for hemoabzymes and is the first example of fully characterized Fe(II)-metabolite complexes of antibody-porphyrin. Also, via a comparison of the reactions with N-substituted hydroxylamines of various size and hydrophobicity, antibody 3A3 was confirmed to bring about a partial steric hindrance on the distal face of MP8. Subsequently, the influence of the antibody on the stereoselectivity of the S-oxidation of sulfides was examined. Our results showed that MP8 alone and the antibody-MP8 complex catalyze the oxidation of thioanisole by H(2)O(2) and tert-butyl hydroperoxide, following a peroxidase-like two-step oxygen-transfer mechanism involving a radical-cation intermediate. The best system, associating H(2)O(2) as oxidant and 3A3-MP8 as a catalyst, in the presence of 5% tert-butyl alcohol, led to the stereoselective S-oxidation of thioanisole with a 45% enantiomeric excess in favour of the R isomer. This constitutes the highest enantiomeric excess reported to date for the oxidation of sulfides catalyzed by hemoabzymes.</p>\",\"PeriodicalId\":11817,\"journal\":{\"name\":\"European journal of biochemistry\",\"volume\":\"271 7\",\"pages\":\"1277-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/j.1432-1033.2004.04032.x\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/j.1432-1033.2004.04032.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1432-1033.2004.04032.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New activities of a catalytic antibody with a peroxidase activity: formation of Fe(II)-RNO complexes and stereoselective oxidation of sulfides.
In order to estimate the size of the cavity remaining around the heme of the 3A3-microperoxidase 8 (MP8) hemoabzyme, the formation of 3A3-MP8-Fe(II)-nitrosoalkane complexes upon oxidation of N-monosubstituted hydroxylamines was examined. This constituted a new reaction for hemoabzymes and is the first example of fully characterized Fe(II)-metabolite complexes of antibody-porphyrin. Also, via a comparison of the reactions with N-substituted hydroxylamines of various size and hydrophobicity, antibody 3A3 was confirmed to bring about a partial steric hindrance on the distal face of MP8. Subsequently, the influence of the antibody on the stereoselectivity of the S-oxidation of sulfides was examined. Our results showed that MP8 alone and the antibody-MP8 complex catalyze the oxidation of thioanisole by H(2)O(2) and tert-butyl hydroperoxide, following a peroxidase-like two-step oxygen-transfer mechanism involving a radical-cation intermediate. The best system, associating H(2)O(2) as oxidant and 3A3-MP8 as a catalyst, in the presence of 5% tert-butyl alcohol, led to the stereoselective S-oxidation of thioanisole with a 45% enantiomeric excess in favour of the R isomer. This constitutes the highest enantiomeric excess reported to date for the oxidation of sulfides catalyzed by hemoabzymes.