金修饰硫掺杂碳纳米管作为析氢反应的电催化剂

IF 2.1 4区 工程技术 Q3 CHEMISTRY, INORGANIC & NUCLEAR Gold Bulletin Pub Date : 2020-05-02 DOI:10.1007/s13404-020-00275-0
Hossein Tavakol, Mohammad Zhiani, Fereshteh Shareifyan-ghahfarokhi
{"title":"金修饰硫掺杂碳纳米管作为析氢反应的电催化剂","authors":"Hossein Tavakol,&nbsp;Mohammad Zhiani,&nbsp;Fereshteh Shareifyan-ghahfarokhi","doi":"10.1007/s13404-020-00275-0","DOIUrl":null,"url":null,"abstract":"<p>In the present work, sulfur-doped carbon nanotubes (SCNTs) have been prepared using chemical vapor deposition method and various cobalt-containing catalysts. In this line, simple and silica-supported cobalt nanoparticles (Co and Co/SiO<sub>2</sub>) and 5 cobalt spinels (MCo<sub>2</sub>O<sub>4</sub>, M?=?Ni, Cu, Mn, Fe, Cr, and Mg) were used as the growth catalysts and four different temperatures (600, 650, 700, and 750?°C) were used to obtain the optimized condition for the preparation of SCNTs. Among the employed catalysts, Co/SiO<sub>2</sub> at 600?°C showed the higher abilities for the preparation of desired SCNTs. All products were characterized using FESEM, EDS, XRD, Raman, static contact angle, TGA, and DTA analyzes. The electrochemical behaviors of the two best products (SCNTs-Co/SiO<sub>2</sub> and SCNTs-Co) in hydrogen evolution reaction (HER) were examined, which confirmed the higher ability of SCNTs-Co/SiO<sub>2</sub>. This best product was decorated with 2, 5, and 10% of gold nanoparticles to examine the effect of gold decoration of the properties and electrochemical abilities of the product. All decorated products exposure the higher electrochemical potencies versus the simple SCNTs and among the decorated products, 10% Au-SCNT was the most appropriate product for this purpose with small differences with the other ones.</p>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":"53 2","pages":"63 - 76"},"PeriodicalIF":2.1000,"publicationDate":"2020-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13404-020-00275-0","citationCount":"7","resultStr":"{\"title\":\"Gold-decorated sulfur-doped carbon nanotubes as electrocatalyst in hydrogen evolution reaction\",\"authors\":\"Hossein Tavakol,&nbsp;Mohammad Zhiani,&nbsp;Fereshteh Shareifyan-ghahfarokhi\",\"doi\":\"10.1007/s13404-020-00275-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present work, sulfur-doped carbon nanotubes (SCNTs) have been prepared using chemical vapor deposition method and various cobalt-containing catalysts. In this line, simple and silica-supported cobalt nanoparticles (Co and Co/SiO<sub>2</sub>) and 5 cobalt spinels (MCo<sub>2</sub>O<sub>4</sub>, M?=?Ni, Cu, Mn, Fe, Cr, and Mg) were used as the growth catalysts and four different temperatures (600, 650, 700, and 750?°C) were used to obtain the optimized condition for the preparation of SCNTs. Among the employed catalysts, Co/SiO<sub>2</sub> at 600?°C showed the higher abilities for the preparation of desired SCNTs. All products were characterized using FESEM, EDS, XRD, Raman, static contact angle, TGA, and DTA analyzes. The electrochemical behaviors of the two best products (SCNTs-Co/SiO<sub>2</sub> and SCNTs-Co) in hydrogen evolution reaction (HER) were examined, which confirmed the higher ability of SCNTs-Co/SiO<sub>2</sub>. This best product was decorated with 2, 5, and 10% of gold nanoparticles to examine the effect of gold decoration of the properties and electrochemical abilities of the product. All decorated products exposure the higher electrochemical potencies versus the simple SCNTs and among the decorated products, 10% Au-SCNT was the most appropriate product for this purpose with small differences with the other ones.</p>\",\"PeriodicalId\":581,\"journal\":{\"name\":\"Gold Bulletin\",\"volume\":\"53 2\",\"pages\":\"63 - 76\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13404-020-00275-0\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gold Bulletin\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13404-020-00275-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-020-00275-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 7

摘要

本文采用化学气相沉积法和多种含钴催化剂制备了硫掺杂碳纳米管。在这条线上,简单的和二氧化硅负载的钴纳米颗粒(Co和Co/SiO2)和5个钴尖晶石(MCo2O4, M?=?以Ni、Cu、Mn、Fe、Cr和Mg为生长催化剂,在600、650、700和750℃4种不同温度下,得到了SCNTs的最佳制备条件。在所采用的催化剂中,Co/SiO2在600?°C显示出更高的制备所需scnt的能力。通过FESEM、EDS、XRD、Raman、静态接触角、TGA、DTA等分析对产品进行了表征。研究了两种最佳产物(scnt - co /SiO2和scnt - co)在析氢反应(HER)中的电化学行为,证实了scnt - co /SiO2具有较高的析氢能力。以2、5%和10%的金纳米粒子修饰最佳产物,考察金修饰对产物性能和电化学性能的影响。与简单的scnt相比,所有修饰产物都暴露出更高的电化学电位,在修饰产物中,10% Au-SCNT是最适合这一目的的产物,与其他产物差异不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gold-decorated sulfur-doped carbon nanotubes as electrocatalyst in hydrogen evolution reaction

In the present work, sulfur-doped carbon nanotubes (SCNTs) have been prepared using chemical vapor deposition method and various cobalt-containing catalysts. In this line, simple and silica-supported cobalt nanoparticles (Co and Co/SiO2) and 5 cobalt spinels (MCo2O4, M?=?Ni, Cu, Mn, Fe, Cr, and Mg) were used as the growth catalysts and four different temperatures (600, 650, 700, and 750?°C) were used to obtain the optimized condition for the preparation of SCNTs. Among the employed catalysts, Co/SiO2 at 600?°C showed the higher abilities for the preparation of desired SCNTs. All products were characterized using FESEM, EDS, XRD, Raman, static contact angle, TGA, and DTA analyzes. The electrochemical behaviors of the two best products (SCNTs-Co/SiO2 and SCNTs-Co) in hydrogen evolution reaction (HER) were examined, which confirmed the higher ability of SCNTs-Co/SiO2. This best product was decorated with 2, 5, and 10% of gold nanoparticles to examine the effect of gold decoration of the properties and electrochemical abilities of the product. All decorated products exposure the higher electrochemical potencies versus the simple SCNTs and among the decorated products, 10% Au-SCNT was the most appropriate product for this purpose with small differences with the other ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gold Bulletin
Gold Bulletin Chemistry-Inorganic Chemistry
CiteScore
3.70
自引率
4.50%
发文量
21
期刊介绍: Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.
期刊最新文献
Gelation of Hydrophilic Polymer Bearing Metal-coordination Units with Au(III) Ions: Application to Synthesis of Porous Gold Time-resolved spectroscopic and SERS characterization of plasmonic optical fiber sensor using glutathione-capped gold nanourchins for detection of lead in water Ornithine-stabilised gold nanoflowers for label-free sensitive detection of Hg2+ via amalgamation Dioxepine-derived surface-capping gold nanoparticles (Dd-AuNPs) induces ROS-mediated apoptosis and cell cycle arrest in A549 human lung cancer cell line Construction of folate-targeted delivery of polymer-coated gold nanoparticles: investigation of anticancer activity and apoptosis induction in parotid gland carcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1