Lukas Unglehrt, Ulrich Jenssen, Fabian Kurz, Wolfgang Schanderl, Johannes Kreuzinger, Florian Schwertfirm, Michael Manhart
{"title":"用切胞浸入边界法模拟圆柱冲刷孔内大涡流动","authors":"Lukas Unglehrt, Ulrich Jenssen, Fabian Kurz, Wolfgang Schanderl, Johannes Kreuzinger, Florian Schwertfirm, Michael Manhart","doi":"10.1007/s10494-022-00379-x","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel symmetry-preserving cut cell finite volume method which is a three-dimensional generalisation of the method by Dröge and Verstappen (Int J Numer Method Fluids 47:979–985, 2005). A colour-coding scheme for the three-dimensional cut momentum cell faces reduces the number of possible cut cell configurations. A cell merging strategy is employed to alleviate time step constraints. We demonstrate the energy conservation property of the convective and pressure gradient terms, and the second-order spatial convergence with suitable benchmark cases. We used the scheme to perform highly resolved large–eddy simulations of the flow inside a scour hole around a circular cylinder mounted vertically in a flume. The simulation results are extensively compared to a stereoscopic particle image velocimetry experiment of the same configuration performed by Jenssen and Manhart (Exp Fluids 61:217, 2020). We demonstrate that for the investigated Reynolds numbers (20,000 and 40,000) nearly converged solutions are obtained; however at large computational efforts (up to 2.35 billion cells for the higher Reynolds number). It turns out that the flow topology of the horseshoe vortex system is strongly dependent on the grid resolution. For simulation results obtained on the finest grid, the mean flow and turbulence quantities agree well with the experiment. We investigate the shape and turbulence structure of the horseshoe vortex based on three-dimensional fields, and discuss the distribution of the mean and standard deviation of the wall shear stress in the scour hole and the implications for the physics of the scouring process over a sand bed.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"109 4","pages":"893 - 929"},"PeriodicalIF":2.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-022-00379-x.pdf","citationCount":"1","resultStr":"{\"title\":\"Large–Eddy Simulation of the Flow Inside a Scour Hole Around a Circular Cylinder Using a Cut Cell Immersed Boundary Method\",\"authors\":\"Lukas Unglehrt, Ulrich Jenssen, Fabian Kurz, Wolfgang Schanderl, Johannes Kreuzinger, Florian Schwertfirm, Michael Manhart\",\"doi\":\"10.1007/s10494-022-00379-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a novel symmetry-preserving cut cell finite volume method which is a three-dimensional generalisation of the method by Dröge and Verstappen (Int J Numer Method Fluids 47:979–985, 2005). A colour-coding scheme for the three-dimensional cut momentum cell faces reduces the number of possible cut cell configurations. A cell merging strategy is employed to alleviate time step constraints. We demonstrate the energy conservation property of the convective and pressure gradient terms, and the second-order spatial convergence with suitable benchmark cases. We used the scheme to perform highly resolved large–eddy simulations of the flow inside a scour hole around a circular cylinder mounted vertically in a flume. The simulation results are extensively compared to a stereoscopic particle image velocimetry experiment of the same configuration performed by Jenssen and Manhart (Exp Fluids 61:217, 2020). We demonstrate that for the investigated Reynolds numbers (20,000 and 40,000) nearly converged solutions are obtained; however at large computational efforts (up to 2.35 billion cells for the higher Reynolds number). It turns out that the flow topology of the horseshoe vortex system is strongly dependent on the grid resolution. For simulation results obtained on the finest grid, the mean flow and turbulence quantities agree well with the experiment. We investigate the shape and turbulence structure of the horseshoe vortex based on three-dimensional fields, and discuss the distribution of the mean and standard deviation of the wall shear stress in the scour hole and the implications for the physics of the scouring process over a sand bed.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"109 4\",\"pages\":\"893 - 929\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-022-00379-x.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-022-00379-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-022-00379-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Large–Eddy Simulation of the Flow Inside a Scour Hole Around a Circular Cylinder Using a Cut Cell Immersed Boundary Method
We present a novel symmetry-preserving cut cell finite volume method which is a three-dimensional generalisation of the method by Dröge and Verstappen (Int J Numer Method Fluids 47:979–985, 2005). A colour-coding scheme for the three-dimensional cut momentum cell faces reduces the number of possible cut cell configurations. A cell merging strategy is employed to alleviate time step constraints. We demonstrate the energy conservation property of the convective and pressure gradient terms, and the second-order spatial convergence with suitable benchmark cases. We used the scheme to perform highly resolved large–eddy simulations of the flow inside a scour hole around a circular cylinder mounted vertically in a flume. The simulation results are extensively compared to a stereoscopic particle image velocimetry experiment of the same configuration performed by Jenssen and Manhart (Exp Fluids 61:217, 2020). We demonstrate that for the investigated Reynolds numbers (20,000 and 40,000) nearly converged solutions are obtained; however at large computational efforts (up to 2.35 billion cells for the higher Reynolds number). It turns out that the flow topology of the horseshoe vortex system is strongly dependent on the grid resolution. For simulation results obtained on the finest grid, the mean flow and turbulence quantities agree well with the experiment. We investigate the shape and turbulence structure of the horseshoe vortex based on three-dimensional fields, and discuss the distribution of the mean and standard deviation of the wall shear stress in the scour hole and the implications for the physics of the scouring process over a sand bed.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.