不良使用条件下粘接接头的安全性

IF 1.68 Q2 Dentistry Applied Adhesion Science Pub Date : 2018-11-02 DOI:10.1186/s40563-018-0105-4
Katja Groß, Paul Ludwig Geiß
{"title":"不良使用条件下粘接接头的安全性","authors":"Katja Groß,&nbsp;Paul Ludwig Geiß","doi":"10.1186/s40563-018-0105-4","DOIUrl":null,"url":null,"abstract":"<p>Durability and safety of adhesively bonded joints are of major importance in structural applications. The probability of failure of a bonded assembly after a certain period of time may be influenced by various aging effects including e.g. temperature and humidity. The correlation of results obtained from accelerated laboratory aging tests to long-term aging under service conditions often remains an unsolved challenge. In the present work, computer-based tools for non-linear regression analysis, estimation of reliability and lifetime prediction have been applied to experimental results obtained by accelerated aging of adhesively bonded shear specimens. Results obtained with an epoxy based adhesive and a hot-dipped galvanized steel as adherend are discussed. The modeling of the aging behavior is performed with combined functions referring to the EYRING as well as the PECK model which both appear appropriate for describing the experimental data. The safety prediction, based on the probability of failure as well as the safety factor <i>β</i>, is performed by using the EYRING model which fits the experimental data in a more conservative manner.</p>","PeriodicalId":464,"journal":{"name":"Applied Adhesion Science","volume":"6 1","pages":""},"PeriodicalIF":1.6800,"publicationDate":"2018-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40563-018-0105-4","citationCount":"1","resultStr":"{\"title\":\"Safety of adhesively bonded joints under detrimental service conditions\",\"authors\":\"Katja Groß,&nbsp;Paul Ludwig Geiß\",\"doi\":\"10.1186/s40563-018-0105-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Durability and safety of adhesively bonded joints are of major importance in structural applications. The probability of failure of a bonded assembly after a certain period of time may be influenced by various aging effects including e.g. temperature and humidity. The correlation of results obtained from accelerated laboratory aging tests to long-term aging under service conditions often remains an unsolved challenge. In the present work, computer-based tools for non-linear regression analysis, estimation of reliability and lifetime prediction have been applied to experimental results obtained by accelerated aging of adhesively bonded shear specimens. Results obtained with an epoxy based adhesive and a hot-dipped galvanized steel as adherend are discussed. The modeling of the aging behavior is performed with combined functions referring to the EYRING as well as the PECK model which both appear appropriate for describing the experimental data. The safety prediction, based on the probability of failure as well as the safety factor <i>β</i>, is performed by using the EYRING model which fits the experimental data in a more conservative manner.</p>\",\"PeriodicalId\":464,\"journal\":{\"name\":\"Applied Adhesion Science\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6800,\"publicationDate\":\"2018-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40563-018-0105-4\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Adhesion Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40563-018-0105-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Adhesion Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40563-018-0105-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 1

摘要

粘接接头的耐久性和安全性在结构应用中具有重要意义。粘合组件在一段时间后失效的概率可能受到各种老化效应的影响,例如温度和湿度。实验室加速老化试验结果与使用条件下长期老化的相关性往往是一个尚未解决的挑战。在本工作中,基于计算机的非线性回归分析、可靠性估计和寿命预测工具已应用于粘接剪切试件加速老化的实验结果。讨论了用环氧基胶粘剂和热镀锌钢板作为胶粘剂的效果。老化行为的建模是用EYRING和PECK模型的组合函数进行的,这两种模型都适合描述实验数据。基于失效概率和安全系数β,采用与实验数据拟合更为保守的EYRING模型进行安全预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safety of adhesively bonded joints under detrimental service conditions

Durability and safety of adhesively bonded joints are of major importance in structural applications. The probability of failure of a bonded assembly after a certain period of time may be influenced by various aging effects including e.g. temperature and humidity. The correlation of results obtained from accelerated laboratory aging tests to long-term aging under service conditions often remains an unsolved challenge. In the present work, computer-based tools for non-linear regression analysis, estimation of reliability and lifetime prediction have been applied to experimental results obtained by accelerated aging of adhesively bonded shear specimens. Results obtained with an epoxy based adhesive and a hot-dipped galvanized steel as adherend are discussed. The modeling of the aging behavior is performed with combined functions referring to the EYRING as well as the PECK model which both appear appropriate for describing the experimental data. The safety prediction, based on the probability of failure as well as the safety factor β, is performed by using the EYRING model which fits the experimental data in a more conservative manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Adhesion Science
Applied Adhesion Science Dentistry-Dentistry (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: Applied Adhesion Science focuses on practical applications of adhesives, with special emphasis in fields such as oil industry, aerospace and biomedicine. Topics related to the phenomena of adhesion and the application of adhesive materials are welcome, especially in biomedical areas such as adhesive dentistry. Both theoretical and experimental works are considered for publication. Applied Adhesion Science is a peer-reviewed open access journal published under the SpringerOpen brand. The journal''s open access policy offers a fast publication workflow whilst maintaining rigorous peer review process.
期刊最新文献
Influence of biobased polyol type on the properties of polyurethane hotmelt adhesives for footwear joints Effect of interface-active proteins on the salt crystal size in waterborne hybrid materials Mechanical properties of unmodified and montmorillonite-modified epoxy compounds. Part I: compression test In vitro antibacterial effect of fifth generation dentin bonding agent incorporated with nisin on Streptococcus mutans Antioxidant pre-treatments are able to reduce waiting time for restorative treatment after dental bleaching: a microtensile bond strength exploratory study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1