M Naoi, W Maruyama, H Yi, Y Akao, Y Yamaoka, M Shamoto-Nagai
{"title":"丙胺在帕金森病中的神经保护作用:抗凋亡功能的细胞内机制和临床标志物的寻找","authors":"M Naoi, W Maruyama, H Yi, Y Akao, Y Yamaoka, M Shamoto-Nagai","doi":"10.1007/978-3-211-73574-9_15","DOIUrl":null,"url":null,"abstract":"<p><p>In Parkinson's and other neurodegenerative diseases, a therapeutic strategy has been proposed to halt progressive cell death. Propargylamine derivatives, rasagiline and (-)deprenyl (selegiline), have been confirmed to protect neurons against cell death induced by various insults in cellular and animal models of neurodegenerative disorders. In this paper, the mechanism and the markers of the neuroprotection are reviewed. Propargylamines prevent the mitochondrial permeabilization, membrane potential decline, cytochrome c release, caspase activation and nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase. At the same time, rasagiline induces anti-apoptotic pro-survival proteins, Bcl-2 and glial cell-line derived neurotrophic factor, which is mediated by activated ERK-NF-kappaB signal pathway. DNA array studies indicate that rasagiline increases the expression of the genes coding mitochondrial energy synthesis, inhibitors of apoptosis, transcription factors, kinases and ubiquitin-proteasome system, sequentially in a time-dependent way. Products of cell survival-related gene induced by propargylamines may be applied as markers of neuroprotection in clinical samples.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"121-31"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-211-73574-9_15","citationCount":"41","resultStr":"{\"title\":\"Neuroprotection by propargylamines in Parkinson's disease: intracellular mechanism underlying the anti-apoptotic function and search for clinical markers.\",\"authors\":\"M Naoi, W Maruyama, H Yi, Y Akao, Y Yamaoka, M Shamoto-Nagai\",\"doi\":\"10.1007/978-3-211-73574-9_15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Parkinson's and other neurodegenerative diseases, a therapeutic strategy has been proposed to halt progressive cell death. Propargylamine derivatives, rasagiline and (-)deprenyl (selegiline), have been confirmed to protect neurons against cell death induced by various insults in cellular and animal models of neurodegenerative disorders. In this paper, the mechanism and the markers of the neuroprotection are reviewed. Propargylamines prevent the mitochondrial permeabilization, membrane potential decline, cytochrome c release, caspase activation and nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase. At the same time, rasagiline induces anti-apoptotic pro-survival proteins, Bcl-2 and glial cell-line derived neurotrophic factor, which is mediated by activated ERK-NF-kappaB signal pathway. DNA array studies indicate that rasagiline increases the expression of the genes coding mitochondrial energy synthesis, inhibitors of apoptosis, transcription factors, kinases and ubiquitin-proteasome system, sequentially in a time-dependent way. Products of cell survival-related gene induced by propargylamines may be applied as markers of neuroprotection in clinical samples.</p>\",\"PeriodicalId\":16395,\"journal\":{\"name\":\"Journal of Neural Transmission-supplement\",\"volume\":\" 72\",\"pages\":\"121-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-211-73574-9_15\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neural Transmission-supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-211-73574-9_15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neural Transmission-supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-211-73574-9_15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neuroprotection by propargylamines in Parkinson's disease: intracellular mechanism underlying the anti-apoptotic function and search for clinical markers.
In Parkinson's and other neurodegenerative diseases, a therapeutic strategy has been proposed to halt progressive cell death. Propargylamine derivatives, rasagiline and (-)deprenyl (selegiline), have been confirmed to protect neurons against cell death induced by various insults in cellular and animal models of neurodegenerative disorders. In this paper, the mechanism and the markers of the neuroprotection are reviewed. Propargylamines prevent the mitochondrial permeabilization, membrane potential decline, cytochrome c release, caspase activation and nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase. At the same time, rasagiline induces anti-apoptotic pro-survival proteins, Bcl-2 and glial cell-line derived neurotrophic factor, which is mediated by activated ERK-NF-kappaB signal pathway. DNA array studies indicate that rasagiline increases the expression of the genes coding mitochondrial energy synthesis, inhibitors of apoptosis, transcription factors, kinases and ubiquitin-proteasome system, sequentially in a time-dependent way. Products of cell survival-related gene induced by propargylamines may be applied as markers of neuroprotection in clinical samples.