K Leuner, J Pantel, C Frey, K Schindowski, K Schulz, T Wegat, K Maurer, A Eckert, W E Müller
{"title":"淋巴细胞凋亡、氧化应激和线粒体功能障碍增强可作为阿尔茨海默病的潜在生物标志物。","authors":"K Leuner, J Pantel, C Frey, K Schindowski, K Schulz, T Wegat, K Maurer, A Eckert, W E Müller","doi":"10.1007/978-3-211-73574-9_27","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. Today, AD affects millions of people worldwide and the number of AD cases will increase with increased life expectancy. The AD brain is marked by severe neurodegeneration like the loss of synapses and neurons, atrophy and depletion of neurotransmitter systems in the hippocampus and cerebral cortex. Recent findings suggest that these pathological changes are causally induced by mitochondrial dysfunction, increased oxidative stress and elevated apoptosis. Until now, AD cannot be diagnosed by a valid clinical method or a biomarker before the disease has progressed so far that dementia is present. Furthermore, no valid method is available to determine which patient with mild cognitive impairment (MCI) will progress to AD. Therefore, a correct diagnosis in the early stage of AD is not only of importance considering that early drug treatment is more effective but also that the psychological burden of the patients and relatives could be decreased. In this review, we discuss the potential role of elevated apoptosis, increased oxidative stress and mitochondrial dysfunction as biomarker for AD in a peripheral cell model, the lymphocytes.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"207-15"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-211-73574-9_27","citationCount":"74","resultStr":"{\"title\":\"Enhanced apoptosis, oxidative stress and mitochondrial dysfunction in lymphocytes as potential biomarkers for Alzheimer's disease.\",\"authors\":\"K Leuner, J Pantel, C Frey, K Schindowski, K Schulz, T Wegat, K Maurer, A Eckert, W E Müller\",\"doi\":\"10.1007/978-3-211-73574-9_27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. Today, AD affects millions of people worldwide and the number of AD cases will increase with increased life expectancy. The AD brain is marked by severe neurodegeneration like the loss of synapses and neurons, atrophy and depletion of neurotransmitter systems in the hippocampus and cerebral cortex. Recent findings suggest that these pathological changes are causally induced by mitochondrial dysfunction, increased oxidative stress and elevated apoptosis. Until now, AD cannot be diagnosed by a valid clinical method or a biomarker before the disease has progressed so far that dementia is present. Furthermore, no valid method is available to determine which patient with mild cognitive impairment (MCI) will progress to AD. Therefore, a correct diagnosis in the early stage of AD is not only of importance considering that early drug treatment is more effective but also that the psychological burden of the patients and relatives could be decreased. In this review, we discuss the potential role of elevated apoptosis, increased oxidative stress and mitochondrial dysfunction as biomarker for AD in a peripheral cell model, the lymphocytes.</p>\",\"PeriodicalId\":16395,\"journal\":{\"name\":\"Journal of Neural Transmission-supplement\",\"volume\":\" 72\",\"pages\":\"207-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-211-73574-9_27\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neural Transmission-supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-211-73574-9_27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neural Transmission-supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-211-73574-9_27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced apoptosis, oxidative stress and mitochondrial dysfunction in lymphocytes as potential biomarkers for Alzheimer's disease.
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. Today, AD affects millions of people worldwide and the number of AD cases will increase with increased life expectancy. The AD brain is marked by severe neurodegeneration like the loss of synapses and neurons, atrophy and depletion of neurotransmitter systems in the hippocampus and cerebral cortex. Recent findings suggest that these pathological changes are causally induced by mitochondrial dysfunction, increased oxidative stress and elevated apoptosis. Until now, AD cannot be diagnosed by a valid clinical method or a biomarker before the disease has progressed so far that dementia is present. Furthermore, no valid method is available to determine which patient with mild cognitive impairment (MCI) will progress to AD. Therefore, a correct diagnosis in the early stage of AD is not only of importance considering that early drug treatment is more effective but also that the psychological burden of the patients and relatives could be decreased. In this review, we discuss the potential role of elevated apoptosis, increased oxidative stress and mitochondrial dysfunction as biomarker for AD in a peripheral cell model, the lymphocytes.