amp活化蛋白激酶在胰岛素作用调控中的潜在作用。

Cellscience Pub Date : 2006-01-28
Jonathan S Fisher
{"title":"amp活化蛋白激酶在胰岛素作用调控中的潜在作用。","authors":"Jonathan S Fisher","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Because of the predominant role of skeletal muscle in insulin-stimulated clearance of blood glucose, understanding mechanisms for increasing the ability of muscle to respond to insulin could potentially lead to novel strategies for treatment or prevention of diabetes. Recently, the AMP activated protein kinase (AMPK) has emerged as a promising candidate for potentiation of insulin action. Several antidiabetic drugs have been shown to activate AMPK, cellular stresses such as exercise that increase AMPK activity also increase insulin action, and several downstream targets of AMPK seem to be involved in regulation of insulin action. Although the picture is currently incomplete, it seems possible that AMPK or one of its effectors is a positive regulator of insulin-stimulated glucose transport. In addition to discussion of the latest literature regarding AMPK and insulin action, this review includes a non-technical summary for students, academics from other fields, interested professionals, and the general public.</p>","PeriodicalId":87394,"journal":{"name":"Cellscience","volume":"2 3","pages":"68-81"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2099311/pdf/nihms-22037.pdf","citationCount":"0","resultStr":"{\"title\":\"Potential Role of the AMP-activated Protein Kinase in Regulation of Insulin Action.\",\"authors\":\"Jonathan S Fisher\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Because of the predominant role of skeletal muscle in insulin-stimulated clearance of blood glucose, understanding mechanisms for increasing the ability of muscle to respond to insulin could potentially lead to novel strategies for treatment or prevention of diabetes. Recently, the AMP activated protein kinase (AMPK) has emerged as a promising candidate for potentiation of insulin action. Several antidiabetic drugs have been shown to activate AMPK, cellular stresses such as exercise that increase AMPK activity also increase insulin action, and several downstream targets of AMPK seem to be involved in regulation of insulin action. Although the picture is currently incomplete, it seems possible that AMPK or one of its effectors is a positive regulator of insulin-stimulated glucose transport. In addition to discussion of the latest literature regarding AMPK and insulin action, this review includes a non-technical summary for students, academics from other fields, interested professionals, and the general public.</p>\",\"PeriodicalId\":87394,\"journal\":{\"name\":\"Cellscience\",\"volume\":\"2 3\",\"pages\":\"68-81\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2099311/pdf/nihms-22037.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellscience","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于骨骼肌在胰岛素刺激的血糖清除中的主要作用,了解增强肌肉对胰岛素反应能力的机制可能会导致治疗或预防糖尿病的新策略。最近,AMP激活的蛋白激酶(AMPK)已成为胰岛素作用增强的有希望的候选物。一些抗糖尿病药物已被证明可以激活AMPK,细胞应激如运动增加AMPK活性也增加胰岛素作用,AMPK的几个下游靶点似乎参与胰岛素作用的调节。虽然目前情况尚不完整,但AMPK或其效应器之一可能是胰岛素刺激的葡萄糖运输的积极调节因子。除了讨论有关AMPK和胰岛素作用的最新文献外,本综述还包括针对学生、其他领域的学者、感兴趣的专业人士和公众的非技术摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential Role of the AMP-activated Protein Kinase in Regulation of Insulin Action.

Because of the predominant role of skeletal muscle in insulin-stimulated clearance of blood glucose, understanding mechanisms for increasing the ability of muscle to respond to insulin could potentially lead to novel strategies for treatment or prevention of diabetes. Recently, the AMP activated protein kinase (AMPK) has emerged as a promising candidate for potentiation of insulin action. Several antidiabetic drugs have been shown to activate AMPK, cellular stresses such as exercise that increase AMPK activity also increase insulin action, and several downstream targets of AMPK seem to be involved in regulation of insulin action. Although the picture is currently incomplete, it seems possible that AMPK or one of its effectors is a positive regulator of insulin-stimulated glucose transport. In addition to discussion of the latest literature regarding AMPK and insulin action, this review includes a non-technical summary for students, academics from other fields, interested professionals, and the general public.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FGF ligands emerge as potential specifiers of synaptic identity. The epigenetics of memory storage in the brain. CFTR is a mechanosensitive anion channel: a real stretch? How can studying psychopaths help us understand the neural mechanisms of moral judgment? Influenza antigenic drift: what is the driving force?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1