通过无枝晶锂金属电池的钾阳离子添加剂的单一效应,实现动态静电屏蔽下的均匀锂沉积行为†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Chemistry Frontiers Pub Date : 2023-07-31 DOI:10.1039/D3QM00392B
Ji Woo Han, Bo Keun Park, Yong Min Kim, Yoonbo Sim, Van-Chuong Ho, Junyoung Mun and Ki Jae Kim
{"title":"通过无枝晶锂金属电池的钾阳离子添加剂的单一效应,实现动态静电屏蔽下的均匀锂沉积行为†","authors":"Ji Woo Han, Bo Keun Park, Yong Min Kim, Yoonbo Sim, Van-Chuong Ho, Junyoung Mun and Ki Jae Kim","doi":"10.1039/D3QM00392B","DOIUrl":null,"url":null,"abstract":"<p >The stabilization of Li metal anodes <em>via</em> dendrite-free Li deposition is a prerequisite for the commercialization of lithium metal batteries (LMBs). Among the various strategies to suppress Li metal anodes, electrolyte modification has been highlighted as a feasible method because it can be easily applied to conventional manufacturing processes. Tremendous efforts have been devoted to achieving dendrite-free Li deposition <em>via</em> various concepts of electrolyte modification. In this study, we first introduce potassium bis(trifluoromethanesulfonyl)imide (KTFSI) as an electrolyte additive for LMBs, which enables an electrostatic shielding effect. In addition, our study focuses solely on the individual effect of the cation (K<small><sup>+</sup></small>), excluding the influence of the anion (TFSI<small><sup>−</sup></small>), thus not considering the synergetic effect of both the anion and cation. As a result of comprehensive analysis and systematic experiments, we confirmed the effects of the KTFSI concentration on the electrostatic shield and determined the optimal concentration that can successfully suppress Li dendrite growth by controlling the deposition behavior of Li. The potassium cation controls the Li deposition behavior and results in surface stabilization of the Li metal anode, which is visually confirmed in <em>in situ</em> optical microscopy <em>(in situ</em> OM) and field-emission scanning electron microscope (FE-SEM). Consequently, our designed electrolyte showed outstanding performance overall during electrochemical testing, such as the Li | Cu asymmetric cell, Li | Li symmetric cell, and Li | LiFePO<small><sub>4</sub></small> (LFP) full cell, compared to the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 19","pages":" 4553-4563"},"PeriodicalIF":6.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling uniform Li deposition behavior with dynamic electrostatic shield by the single effect of potassium cation additive for dendrite-free lithium metal batteries†\",\"authors\":\"Ji Woo Han, Bo Keun Park, Yong Min Kim, Yoonbo Sim, Van-Chuong Ho, Junyoung Mun and Ki Jae Kim\",\"doi\":\"10.1039/D3QM00392B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The stabilization of Li metal anodes <em>via</em> dendrite-free Li deposition is a prerequisite for the commercialization of lithium metal batteries (LMBs). Among the various strategies to suppress Li metal anodes, electrolyte modification has been highlighted as a feasible method because it can be easily applied to conventional manufacturing processes. Tremendous efforts have been devoted to achieving dendrite-free Li deposition <em>via</em> various concepts of electrolyte modification. In this study, we first introduce potassium bis(trifluoromethanesulfonyl)imide (KTFSI) as an electrolyte additive for LMBs, which enables an electrostatic shielding effect. In addition, our study focuses solely on the individual effect of the cation (K<small><sup>+</sup></small>), excluding the influence of the anion (TFSI<small><sup>−</sup></small>), thus not considering the synergetic effect of both the anion and cation. As a result of comprehensive analysis and systematic experiments, we confirmed the effects of the KTFSI concentration on the electrostatic shield and determined the optimal concentration that can successfully suppress Li dendrite growth by controlling the deposition behavior of Li. The potassium cation controls the Li deposition behavior and results in surface stabilization of the Li metal anode, which is visually confirmed in <em>in situ</em> optical microscopy <em>(in situ</em> OM) and field-emission scanning electron microscope (FE-SEM). Consequently, our designed electrolyte showed outstanding performance overall during electrochemical testing, such as the Li | Cu asymmetric cell, Li | Li symmetric cell, and Li | LiFePO<small><sub>4</sub></small> (LFP) full cell, compared to the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 19\",\"pages\":\" 4553-4563\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/qm/d3qm00392b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/qm/d3qm00392b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过无枝晶Li沉积来稳定Li金属阳极是锂金属电池(LMBs)商业化的先决条件。在抑制锂金属阳极的各种策略中,电解质改性已被强调为一种可行的方法,因为它可以很容易地应用于传统的制造工艺。通过电解质改性的各种概念,人们已经付出了巨大的努力来实现无枝晶的Li沉积。在本研究中,我们首先引入了双(三氟甲磺酰基)酰亚胺钾(KTFSI)作为LMBs的电解质添加剂,它能够实现静电屏蔽效果。此外,我们的研究仅关注阳离子(K+)的个体效应,排除了阴离子(TFSI−)的影响,因此没有考虑阴离子和阳离子的协同效应。通过综合分析和系统实验,我们证实了KTFSI浓度对静电屏蔽的影响,并通过控制Li的沉积行为确定了能够成功抑制Li枝晶生长的最佳浓度,这在原位光学显微镜(原位OM)和场发射扫描电子显微镜(FE-SEM)中得到了视觉确认。因此,与双(三氟甲磺酰基)酰亚胺锂(LiTFSI)电解质相比,我们设计的电解质在电化学测试期间总体表现出优异的性能,例如Li|Cu不对称电池、Li|Li对称电池和Li|LiFePO4(LFP)全电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling uniform Li deposition behavior with dynamic electrostatic shield by the single effect of potassium cation additive for dendrite-free lithium metal batteries†

The stabilization of Li metal anodes via dendrite-free Li deposition is a prerequisite for the commercialization of lithium metal batteries (LMBs). Among the various strategies to suppress Li metal anodes, electrolyte modification has been highlighted as a feasible method because it can be easily applied to conventional manufacturing processes. Tremendous efforts have been devoted to achieving dendrite-free Li deposition via various concepts of electrolyte modification. In this study, we first introduce potassium bis(trifluoromethanesulfonyl)imide (KTFSI) as an electrolyte additive for LMBs, which enables an electrostatic shielding effect. In addition, our study focuses solely on the individual effect of the cation (K+), excluding the influence of the anion (TFSI), thus not considering the synergetic effect of both the anion and cation. As a result of comprehensive analysis and systematic experiments, we confirmed the effects of the KTFSI concentration on the electrostatic shield and determined the optimal concentration that can successfully suppress Li dendrite growth by controlling the deposition behavior of Li. The potassium cation controls the Li deposition behavior and results in surface stabilization of the Li metal anode, which is visually confirmed in in situ optical microscopy (in situ OM) and field-emission scanning electron microscope (FE-SEM). Consequently, our designed electrolyte showed outstanding performance overall during electrochemical testing, such as the Li | Cu asymmetric cell, Li | Li symmetric cell, and Li | LiFePO4 (LFP) full cell, compared to the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
期刊最新文献
Back cover Self-assembled phthalocyanine-based nano-photosensitizers in photodynamic therapy for hypoxic tumors Back cover Retraction: A supramolecular nanotube used as a water-degradable template for the production of protein nanotubes with high thermal/chemical stabilities Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1