Kun Wei, Xie Wang, Liming Shi, Sen Yang, Zhifeng Xue, Wei Qin, Junwei Wang, Kaixuan Xu, Xianlong Zhang
{"title":"钾促进的Fe–Ce复合氧化物整体催化剂用于催化烟灰燃烧","authors":"Kun Wei, Xie Wang, Liming Shi, Sen Yang, Zhifeng Xue, Wei Qin, Junwei Wang, Kaixuan Xu, Xianlong Zhang","doi":"10.1007/s11696-023-02995-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the potassium promoted Fe–Ce composite oxides supported on the monolithic three-dimensional (3D) macroporous nickel foam substrates (KFeCe@NF) were synthesized by sequential wetness impregnation method and used for catalytic soot combustion. The best catalytic performance was obtained over K(0.1)FeCe@NF catalyst under 10%H<sub>2</sub>O/800ppmNO/20%O<sub>2</sub>/N<sub>2</sub> atmosphere using a wet contact mode and the lowest T<sub>10</sub>, T<sub>50</sub> and T<sub>90</sub> values could reduce to 274 ℃, 313 ℃ and 353 ℃, respectively. A detailed comparison of the structural properties for the samples before and after potassium loading was conducted by XRD, FESEM, EDS and XPS. The addition of K could lead to reduction of partial Fe<sub>2</sub>O<sub>3</sub> to FeO and make the Fe<sub>2</sub>O<sub>3</sub> nanosheets transform into agglomerated nanoparticles. Moreover, the enhanced catalytic performance of KFeCe@NF for soot combustion is main due to the abundant active oxygen species inspired by the strong interaction between potassium and transition metal oxides.</p></div>","PeriodicalId":55265,"journal":{"name":"Chemical Papers","volume":"77 11","pages":"7045 - 7052"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11696-023-02995-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Potassium promoted Fe–Ce composite oxides monolithic catalysts for catalytic soot combustion\",\"authors\":\"Kun Wei, Xie Wang, Liming Shi, Sen Yang, Zhifeng Xue, Wei Qin, Junwei Wang, Kaixuan Xu, Xianlong Zhang\",\"doi\":\"10.1007/s11696-023-02995-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, the potassium promoted Fe–Ce composite oxides supported on the monolithic three-dimensional (3D) macroporous nickel foam substrates (KFeCe@NF) were synthesized by sequential wetness impregnation method and used for catalytic soot combustion. The best catalytic performance was obtained over K(0.1)FeCe@NF catalyst under 10%H<sub>2</sub>O/800ppmNO/20%O<sub>2</sub>/N<sub>2</sub> atmosphere using a wet contact mode and the lowest T<sub>10</sub>, T<sub>50</sub> and T<sub>90</sub> values could reduce to 274 ℃, 313 ℃ and 353 ℃, respectively. A detailed comparison of the structural properties for the samples before and after potassium loading was conducted by XRD, FESEM, EDS and XPS. The addition of K could lead to reduction of partial Fe<sub>2</sub>O<sub>3</sub> to FeO and make the Fe<sub>2</sub>O<sub>3</sub> nanosheets transform into agglomerated nanoparticles. Moreover, the enhanced catalytic performance of KFeCe@NF for soot combustion is main due to the abundant active oxygen species inspired by the strong interaction between potassium and transition metal oxides.</p></div>\",\"PeriodicalId\":55265,\"journal\":{\"name\":\"Chemical Papers\",\"volume\":\"77 11\",\"pages\":\"7045 - 7052\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11696-023-02995-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Papers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11696-023-02995-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-023-02995-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In this work, the potassium promoted Fe–Ce composite oxides supported on the monolithic three-dimensional (3D) macroporous nickel foam substrates (KFeCe@NF) were synthesized by sequential wetness impregnation method and used for catalytic soot combustion. The best catalytic performance was obtained over K(0.1)FeCe@NF catalyst under 10%H2O/800ppmNO/20%O2/N2 atmosphere using a wet contact mode and the lowest T10, T50 and T90 values could reduce to 274 ℃, 313 ℃ and 353 ℃, respectively. A detailed comparison of the structural properties for the samples before and after potassium loading was conducted by XRD, FESEM, EDS and XPS. The addition of K could lead to reduction of partial Fe2O3 to FeO and make the Fe2O3 nanosheets transform into agglomerated nanoparticles. Moreover, the enhanced catalytic performance of KFeCe@NF for soot combustion is main due to the abundant active oxygen species inspired by the strong interaction between potassium and transition metal oxides.
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.