Yao Wang, Xu Han, Xiang-Yu Qin, Ying Zhang, Na Guo, Han-Lin Zhu, Yu-Jie Fu
{"title":"植物化学物质的固体制剂:基于β-环糊精微胶囊化提高黄芪甲苷IV的溶解度和生物利用度","authors":"Yao Wang, Xu Han, Xiang-Yu Qin, Ying Zhang, Na Guo, Han-Lin Zhu, Yu-Jie Fu","doi":"10.1007/s11696-023-02953-7","DOIUrl":null,"url":null,"abstract":"<div><p>Astragaloside IV/β-cyclodextrin inclusion complex (AsIV/β-CD IC) was successfully prepared by low-temperature sedimentation technology. Under the preparation conditions inclusion temperature 60 °C, inclusion time 3 h, core–wall material molar ratio 1:1, and inclusion rate 750 rpm, the optimal encapsulation efficiency reached 81.63%. It was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD) and thermogravimetric (TGA). Physicochemical characterization of the AsIV/β-CD IC indicated that the complexation of AsIV/β-CD was successful, and the thermal stability of AsIV was improved clearly. Through granulation technology, astragalus saponin granules (ASG) with uniform size from AsIV/β-CD IC were obtained. ASG possessed significant water solubility and storage stability beside fine taste. In addition, ASG demonstrated beneficial bioactivity in antioxidant and antibacterial functions. Antioxidative stress detection showed that ASG could inhibit the increase of malondialdehyde (MDA) content and the decrease of superoxide dismutase (SOD) content in cells caused by lipopolysaccharides (LPS). In addition, in vitro antibacterial experiments of ASG showed that ASG has obvious antibacterial activity against 6 strains, especially the minimum inhibitory concentration (MIC) value of <i>Escherichia coli</i> and <i>Bacillus subtilis</i> reached 12.5 mg/mL.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":55265,"journal":{"name":"Chemical Papers","volume":"77 11","pages":"6491 - 6503"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11696-023-02953-7.pdf","citationCount":"0","resultStr":"{\"title\":\"A solid preparation of phytochemicals: improvement of the solubility and bioavailability of astragaloside IV based on β-cyclodextrin microencapsulation\",\"authors\":\"Yao Wang, Xu Han, Xiang-Yu Qin, Ying Zhang, Na Guo, Han-Lin Zhu, Yu-Jie Fu\",\"doi\":\"10.1007/s11696-023-02953-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Astragaloside IV/β-cyclodextrin inclusion complex (AsIV/β-CD IC) was successfully prepared by low-temperature sedimentation technology. Under the preparation conditions inclusion temperature 60 °C, inclusion time 3 h, core–wall material molar ratio 1:1, and inclusion rate 750 rpm, the optimal encapsulation efficiency reached 81.63%. It was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD) and thermogravimetric (TGA). Physicochemical characterization of the AsIV/β-CD IC indicated that the complexation of AsIV/β-CD was successful, and the thermal stability of AsIV was improved clearly. Through granulation technology, astragalus saponin granules (ASG) with uniform size from AsIV/β-CD IC were obtained. ASG possessed significant water solubility and storage stability beside fine taste. In addition, ASG demonstrated beneficial bioactivity in antioxidant and antibacterial functions. Antioxidative stress detection showed that ASG could inhibit the increase of malondialdehyde (MDA) content and the decrease of superoxide dismutase (SOD) content in cells caused by lipopolysaccharides (LPS). In addition, in vitro antibacterial experiments of ASG showed that ASG has obvious antibacterial activity against 6 strains, especially the minimum inhibitory concentration (MIC) value of <i>Escherichia coli</i> and <i>Bacillus subtilis</i> reached 12.5 mg/mL.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":55265,\"journal\":{\"name\":\"Chemical Papers\",\"volume\":\"77 11\",\"pages\":\"6491 - 6503\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11696-023-02953-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Papers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11696-023-02953-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-023-02953-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A solid preparation of phytochemicals: improvement of the solubility and bioavailability of astragaloside IV based on β-cyclodextrin microencapsulation
Astragaloside IV/β-cyclodextrin inclusion complex (AsIV/β-CD IC) was successfully prepared by low-temperature sedimentation technology. Under the preparation conditions inclusion temperature 60 °C, inclusion time 3 h, core–wall material molar ratio 1:1, and inclusion rate 750 rpm, the optimal encapsulation efficiency reached 81.63%. It was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD) and thermogravimetric (TGA). Physicochemical characterization of the AsIV/β-CD IC indicated that the complexation of AsIV/β-CD was successful, and the thermal stability of AsIV was improved clearly. Through granulation technology, astragalus saponin granules (ASG) with uniform size from AsIV/β-CD IC were obtained. ASG possessed significant water solubility and storage stability beside fine taste. In addition, ASG demonstrated beneficial bioactivity in antioxidant and antibacterial functions. Antioxidative stress detection showed that ASG could inhibit the increase of malondialdehyde (MDA) content and the decrease of superoxide dismutase (SOD) content in cells caused by lipopolysaccharides (LPS). In addition, in vitro antibacterial experiments of ASG showed that ASG has obvious antibacterial activity against 6 strains, especially the minimum inhibitory concentration (MIC) value of Escherichia coli and Bacillus subtilis reached 12.5 mg/mL.
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.