柠檬酸盐封端纳米金比色法识别氟西汀和舍曲林

IF 2.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Chemical Papers Pub Date : 2023-07-25 DOI:10.1007/s11696-023-02990-2
Sana Laghari, Muhammad Yar Khuhawar
{"title":"柠檬酸盐封端纳米金比色法识别氟西汀和舍曲林","authors":"Sana Laghari,&nbsp;Muhammad Yar Khuhawar","doi":"10.1007/s11696-023-02990-2","DOIUrl":null,"url":null,"abstract":"<div><p>A new colorimetric method was developed based on gold nanoparticles (AuNPs) as an optical sensor for fluoxetine (Flx) and sertraline (Ser) in aqueous and micellar media. The drugs caused citrate-stabilized gold nanoparticles (Cit-AuNPs) to aggregate due to hydrogen bonding, resulting in alterations in color and absorption spectra. The impact of several parameters such as pH, reaction time, surfactants, and the concentration of analyte was investigated on the aggregation. Visible absorption spectra revealed that the absorption ratios (A<sub>650</sub>/A<sub>520</sub> and, A<sub>630</sub>/A<sub>520</sub>) were linear with Flx and Ser in the concentration range of 2–22 nM in the aqueous medium. An improvement in the sensitivity and linear calibration range was observed in a micellar medium within 0.1–1.5 nM with a coefficient of determination of 0.999, under optimal conditions. This strategy was used to quantify Flx and Ser with a detection limit of 0.511–0.543 nM in an aqueous medium and 0.041–0.047 nM in a polyvinylpyrrolidone (PVP) micellar medium without any sophisticated equipment. PVP also had a noticeable influence on the stability of the solutions. The anti-interference performance of the Cit-AuNPs-based detection system for the two drugs was good. The method was effectively utilized to quantify Flx and Ser in pharmaceutical preparations, human urine, and blood serum samples due to its good efficiency, rapid reaction rate, and improved sensitivity with relative standard deviations (RSDs) within 1.3%.</p></div>","PeriodicalId":55265,"journal":{"name":"Chemical Papers","volume":"77 11","pages":"6975 - 6990"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11696-023-02990-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Colorimetric recognition of fluoxetine and sertraline using citrate-capped gold nanoparticles\",\"authors\":\"Sana Laghari,&nbsp;Muhammad Yar Khuhawar\",\"doi\":\"10.1007/s11696-023-02990-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new colorimetric method was developed based on gold nanoparticles (AuNPs) as an optical sensor for fluoxetine (Flx) and sertraline (Ser) in aqueous and micellar media. The drugs caused citrate-stabilized gold nanoparticles (Cit-AuNPs) to aggregate due to hydrogen bonding, resulting in alterations in color and absorption spectra. The impact of several parameters such as pH, reaction time, surfactants, and the concentration of analyte was investigated on the aggregation. Visible absorption spectra revealed that the absorption ratios (A<sub>650</sub>/A<sub>520</sub> and, A<sub>630</sub>/A<sub>520</sub>) were linear with Flx and Ser in the concentration range of 2–22 nM in the aqueous medium. An improvement in the sensitivity and linear calibration range was observed in a micellar medium within 0.1–1.5 nM with a coefficient of determination of 0.999, under optimal conditions. This strategy was used to quantify Flx and Ser with a detection limit of 0.511–0.543 nM in an aqueous medium and 0.041–0.047 nM in a polyvinylpyrrolidone (PVP) micellar medium without any sophisticated equipment. PVP also had a noticeable influence on the stability of the solutions. The anti-interference performance of the Cit-AuNPs-based detection system for the two drugs was good. The method was effectively utilized to quantify Flx and Ser in pharmaceutical preparations, human urine, and blood serum samples due to its good efficiency, rapid reaction rate, and improved sensitivity with relative standard deviations (RSDs) within 1.3%.</p></div>\",\"PeriodicalId\":55265,\"journal\":{\"name\":\"Chemical Papers\",\"volume\":\"77 11\",\"pages\":\"6975 - 6990\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11696-023-02990-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Papers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11696-023-02990-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-023-02990-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于金纳米粒子(AuNPs)作为氟西汀(Flx)和舍曲林(Ser)在水性和胶束介质中的光学传感器,开发了一种新的比色方法。这些药物导致柠檬酸盐稳定的金纳米颗粒(Cit-AuNPs)由于氢键而聚集,导致颜色和吸收光谱的改变。研究了pH、反应时间、表面活性剂和分析物浓度等参数对聚集的影响。可见吸收光谱显示,在水性介质中,在2–22 nM的浓度范围内,吸收比(A650/A520和A630/A520)与Flx和Ser呈线性关系。在最佳条件下,在0.1–1.5 nM的胶束介质中观察到灵敏度和线性校准范围的提高,测定系数为0.999。该策略用于量化Flx和Ser,在没有任何复杂设备的情况下,在水性介质中的检测限为0.511–0.543 nM,在聚乙烯吡咯烷酮(PVP)胶束介质中的检出限为0.041–0.047 nM。PVP对溶液的稳定性也有显著影响。基于Cit-AuNPs的检测系统对这两种药物的抗干扰性能良好。该方法有效地用于定量药物制剂、人类尿液和血清样品中的Flx和Ser,因为它具有良好的效率、快速的反应速率和提高的灵敏度,相对标准偏差(RSD)在1.3%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Colorimetric recognition of fluoxetine and sertraline using citrate-capped gold nanoparticles

A new colorimetric method was developed based on gold nanoparticles (AuNPs) as an optical sensor for fluoxetine (Flx) and sertraline (Ser) in aqueous and micellar media. The drugs caused citrate-stabilized gold nanoparticles (Cit-AuNPs) to aggregate due to hydrogen bonding, resulting in alterations in color and absorption spectra. The impact of several parameters such as pH, reaction time, surfactants, and the concentration of analyte was investigated on the aggregation. Visible absorption spectra revealed that the absorption ratios (A650/A520 and, A630/A520) were linear with Flx and Ser in the concentration range of 2–22 nM in the aqueous medium. An improvement in the sensitivity and linear calibration range was observed in a micellar medium within 0.1–1.5 nM with a coefficient of determination of 0.999, under optimal conditions. This strategy was used to quantify Flx and Ser with a detection limit of 0.511–0.543 nM in an aqueous medium and 0.041–0.047 nM in a polyvinylpyrrolidone (PVP) micellar medium without any sophisticated equipment. PVP also had a noticeable influence on the stability of the solutions. The anti-interference performance of the Cit-AuNPs-based detection system for the two drugs was good. The method was effectively utilized to quantify Flx and Ser in pharmaceutical preparations, human urine, and blood serum samples due to its good efficiency, rapid reaction rate, and improved sensitivity with relative standard deviations (RSDs) within 1.3%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Papers
Chemical Papers 化学-化学综合
CiteScore
3.90
自引率
4.50%
发文量
590
审稿时长
2.5 months
期刊介绍: Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.
期刊最新文献
Leaching studies of magnesite using perchloric acid thermochemical and electrochemical treatment of magnesium chloride A unique synthesis of N-(Z)-5-bromo-6-hydroxyhexahydro isobenzofuran-1(3H)-ylidene)methanaminium bromide Synthesis and characterization of related compounds of Bisoprolol fumarate: a β-blocker agent Determination of sodium bicarbonate in compositions of smoke-type fireworks based on automatic potentiometric setting dynamic pH titration method Synthesis of amino acid-functionalized Cit-T20-GNPs and investigation of their metal ion selectivity for colorimetric sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1