纳米流体的多尺度模拟:最新进展和展望

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-02-23 DOI:10.1002/wcms.1661
Chenxia Xie, Hui Li
{"title":"纳米流体的多尺度模拟:最新进展和展望","authors":"Chenxia Xie,&nbsp;Hui Li","doi":"10.1002/wcms.1661","DOIUrl":null,"url":null,"abstract":"<p>Nanofluidics research has achieved a significant growth over the past few years. New phenomena of nanoscaled fluid flows are being reported continuously, such as altered liquid properties, fast flows, and ion rectification, which attract tremendous research interests in many fields, such as membrane science, biological nanochips, and energy conventions. Multiscale simulations, covering quantum mechanics, molecular mechanics, coarse-grained particle dynamics (mesoscale), and continuum mechanics, have shown their great advantages in studying the new frontier of nanofluidics in academia and industry, which is in range of 1–1000 nm scale. These simulations provide the opportunity to visualize the nanofluidics applications existed in the minds of scientists and then guide experimental design to realize the potential of nanofluidics applications in industrial. In this article, we attempt to give a comprehensive review of nanofluidics from the aspect of multiscale simulations. The methodology and role of various simulation methods used in the investigation of nanofluidics are presented. The properties and characteristics of nanofluidics are summarized. The applications of nanofluidics in recent years are emphasized. And then the development of simulation methods and the application of nanofluidics are also prospected.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 5","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiscale simulations of nanofluidics: Recent progress and perspective\",\"authors\":\"Chenxia Xie,&nbsp;Hui Li\",\"doi\":\"10.1002/wcms.1661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanofluidics research has achieved a significant growth over the past few years. New phenomena of nanoscaled fluid flows are being reported continuously, such as altered liquid properties, fast flows, and ion rectification, which attract tremendous research interests in many fields, such as membrane science, biological nanochips, and energy conventions. Multiscale simulations, covering quantum mechanics, molecular mechanics, coarse-grained particle dynamics (mesoscale), and continuum mechanics, have shown their great advantages in studying the new frontier of nanofluidics in academia and industry, which is in range of 1–1000 nm scale. These simulations provide the opportunity to visualize the nanofluidics applications existed in the minds of scientists and then guide experimental design to realize the potential of nanofluidics applications in industrial. In this article, we attempt to give a comprehensive review of nanofluidics from the aspect of multiscale simulations. The methodology and role of various simulation methods used in the investigation of nanofluidics are presented. The properties and characteristics of nanofluidics are summarized. The applications of nanofluidics in recent years are emphasized. And then the development of simulation methods and the application of nanofluidics are also prospected.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"13 5\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1661\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1661","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

纳米流体学研究在过去几年中取得了显著的发展。纳米流体流动的新现象不断被报道,如液体性质的改变、快速流动和离子整流,在膜科学、生物纳米芯片和能源公约等许多领域引起了巨大的研究兴趣。涵盖量子力学、分子力学、粗颗粒动力学(中尺度)和连续介质力学的多尺度模拟在研究学术界和工业界纳米流体学的新前沿方面显示出了巨大的优势,其范围在1–1000 纳米尺度。这些模拟为可视化科学家心目中存在的纳米流体应用提供了机会,然后指导实验设计,以实现纳米流体在工业中的应用潜力。在本文中,我们试图从多尺度模拟的角度对纳米流体学进行全面的综述。介绍了在纳米流体研究中使用的各种模拟方法的方法和作用。综述了纳米流体的性质和特点。重点介绍了近年来纳米流体学的应用。并对模拟方法的发展和纳米流体学的应用进行了展望。本文分类如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale simulations of nanofluidics: Recent progress and perspective

Nanofluidics research has achieved a significant growth over the past few years. New phenomena of nanoscaled fluid flows are being reported continuously, such as altered liquid properties, fast flows, and ion rectification, which attract tremendous research interests in many fields, such as membrane science, biological nanochips, and energy conventions. Multiscale simulations, covering quantum mechanics, molecular mechanics, coarse-grained particle dynamics (mesoscale), and continuum mechanics, have shown their great advantages in studying the new frontier of nanofluidics in academia and industry, which is in range of 1–1000 nm scale. These simulations provide the opportunity to visualize the nanofluidics applications existed in the minds of scientists and then guide experimental design to realize the potential of nanofluidics applications in industrial. In this article, we attempt to give a comprehensive review of nanofluidics from the aspect of multiscale simulations. The methodology and role of various simulation methods used in the investigation of nanofluidics are presented. The properties and characteristics of nanofluidics are summarized. The applications of nanofluidics in recent years are emphasized. And then the development of simulation methods and the application of nanofluidics are also prospected.

This article is categorized under:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
期刊最新文献
Issue Information Embedded Many-Body Green's Function Methods for Electronic Excitations in Complex Molecular Systems ROBERT: Bridging the Gap Between Machine Learning and Chemistry Advanced quantum and semiclassical methods for simulating photoinduced molecular dynamics and spectroscopy Computational design of energy-related materials: From first-principles calculations to machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1