用于混合蒸发诱导发电系统的碳材料

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2023-08-22 DOI:10.1039/D3GC02805D
Can Ge, Duo Xu, Yan Qian, Heng Du, Chong Gao, Zhuoer Shen, Zhe Sun and Jian Fang
{"title":"用于混合蒸发诱导发电系统的碳材料","authors":"Can Ge, Duo Xu, Yan Qian, Heng Du, Chong Gao, Zhuoer Shen, Zhe Sun and Jian Fang","doi":"10.1039/D3GC02805D","DOIUrl":null,"url":null,"abstract":"<p >Solar-driven steam generation (SSG) systems for sustainable clean water desalination and purification through photothermal conversion have been widely studied. Integrating solar-driven electricity generation (SEG) including hydroelectricity, saline electricity, moisture electricity, and thermoelectricity during the evaporation process is an effective way to utilize energy comprehensively. Carbon materials with superior stability, processability, practicability, abundance, and cost-effectiveness have aroused tremendous attention in the solar-driven steam and electricity generation (SSEG) field. Carbon materials can simultaneously play the essential role of solar absorbers for energy harvesting and conductive substrates for energy generation during SSEG. In this review, energy harvesting and generation mechanisms of carbon materials with different dimensions are first introduced. Afterward, the hybrid evaporation-induced electricity generation devices including hydroelectricity, saline electricity, moisture electricity, and thermoelectricity, and relevant efficiency-improving strategies are demonstrated. Moreover, the potential applications in power supply, energy storage, and electrical sensors are also discussed. Finally, some remaining challenges are considered, and suggestions for future development are sincerely proposed.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 19","pages":" 7470-7484"},"PeriodicalIF":9.3000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon materials for hybrid evaporation-induced electricity generation systems\",\"authors\":\"Can Ge, Duo Xu, Yan Qian, Heng Du, Chong Gao, Zhuoer Shen, Zhe Sun and Jian Fang\",\"doi\":\"10.1039/D3GC02805D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Solar-driven steam generation (SSG) systems for sustainable clean water desalination and purification through photothermal conversion have been widely studied. Integrating solar-driven electricity generation (SEG) including hydroelectricity, saline electricity, moisture electricity, and thermoelectricity during the evaporation process is an effective way to utilize energy comprehensively. Carbon materials with superior stability, processability, practicability, abundance, and cost-effectiveness have aroused tremendous attention in the solar-driven steam and electricity generation (SSEG) field. Carbon materials can simultaneously play the essential role of solar absorbers for energy harvesting and conductive substrates for energy generation during SSEG. In this review, energy harvesting and generation mechanisms of carbon materials with different dimensions are first introduced. Afterward, the hybrid evaporation-induced electricity generation devices including hydroelectricity, saline electricity, moisture electricity, and thermoelectricity, and relevant efficiency-improving strategies are demonstrated. Moreover, the potential applications in power supply, energy storage, and electrical sensors are also discussed. Finally, some remaining challenges are considered, and suggestions for future development are sincerely proposed.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 19\",\"pages\":\" 7470-7484\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc02805d\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc02805d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过光热转换实现可持续清洁水脱盐和净化的太阳能蒸汽发电系统已得到广泛研究。在蒸发过程中集成太阳能发电(SEG),包括水电、盐水、湿气和热电,是综合利用能源的有效途径。碳材料具有优异的稳定性、可加工性、实用性、丰富性和成本效益,在太阳能蒸汽发电领域引起了极大的关注。在SSEG过程中,碳材料可以同时发挥太阳能吸收器和导电基底的重要作用。本文首先介绍了不同尺寸碳材料的能量收集和产生机制。然后,介绍了包括水电、盐水、湿气和热电在内的混合蒸发发电装置,以及相关的效率提高策略。此外,还讨论了其在电源、储能和电传感器方面的潜在应用。最后,考虑了一些剩余的挑战,并真诚地提出了未来发展的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbon materials for hybrid evaporation-induced electricity generation systems

Solar-driven steam generation (SSG) systems for sustainable clean water desalination and purification through photothermal conversion have been widely studied. Integrating solar-driven electricity generation (SEG) including hydroelectricity, saline electricity, moisture electricity, and thermoelectricity during the evaporation process is an effective way to utilize energy comprehensively. Carbon materials with superior stability, processability, practicability, abundance, and cost-effectiveness have aroused tremendous attention in the solar-driven steam and electricity generation (SSEG) field. Carbon materials can simultaneously play the essential role of solar absorbers for energy harvesting and conductive substrates for energy generation during SSEG. In this review, energy harvesting and generation mechanisms of carbon materials with different dimensions are first introduced. Afterward, the hybrid evaporation-induced electricity generation devices including hydroelectricity, saline electricity, moisture electricity, and thermoelectricity, and relevant efficiency-improving strategies are demonstrated. Moreover, the potential applications in power supply, energy storage, and electrical sensors are also discussed. Finally, some remaining challenges are considered, and suggestions for future development are sincerely proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Back cover Measuring green chemistry: methods, models, and metrics Inside back cover Back cover Development of a highly efficient electrocatalytic hydrogenation and dehalogenation system using a flow cell with a Pd tube cathode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1