Edward Lavender, Stanis?aw Biber, Janine Illian, Mark James, Peter J. Wright, James Thorburn, Sophie Smout
{"title":"无源声学遥测的集成建模框架","authors":"Edward Lavender, Stanis?aw Biber, Janine Illian, Mark James, Peter J. Wright, James Thorburn, Sophie Smout","doi":"10.1111/2041-210X.14193","DOIUrl":null,"url":null,"abstract":"Passive acoustic telemetry is widely used to study the movements of aquatic animals. However, a holistic, mechanistic modelling framework that permits the reconstruction of fine‐scale movements and emergent patterns of space use from detections at receivers remains lacking. Here, we introduce an integrative modelling framework that recapitulates the movement and detection processes that generate detections to reconstruct fine‐scale movements and patterns of space use. This framework is supported by a new family of algorithms designed for detection and depth observations and can be flexibly extended to incorporate other data types. Using simulation, we illustrate applications of our framework and evaluate algorithm utility and sensitivity in different settings. As a case study, we analyse movement data collected from the Critically Endangered flapper skate (Dipturus intermedius) in Scotland. We show that our methods can be used to reconstruct fine‐scale movement paths, patterns of space use and support habitat preference analyses. For reconstructing patterns of space use, simulations show that the methods are consistently more instructive than the most widely used alternative approach (the mean‐position algorithm), particularly in clustered receiver arrays. For flapper skate, the reconstruction of movements reveals responses to disturbance, fine‐scale spatial partitioning and patterns of space use with significant implications for marine management. We conclude that this framework represents a widely applicable methodological advance with applications to studies of pelagic, demersal and benthic species across multiple spatiotemporal scales.","PeriodicalId":208,"journal":{"name":"Methods in Ecology and Evolution","volume":"14 10","pages":"2626-2638"},"PeriodicalIF":6.3000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.14193","citationCount":"0","resultStr":"{\"title\":\"An integrative modelling framework for passive acoustic telemetry\",\"authors\":\"Edward Lavender, Stanis?aw Biber, Janine Illian, Mark James, Peter J. Wright, James Thorburn, Sophie Smout\",\"doi\":\"10.1111/2041-210X.14193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passive acoustic telemetry is widely used to study the movements of aquatic animals. However, a holistic, mechanistic modelling framework that permits the reconstruction of fine‐scale movements and emergent patterns of space use from detections at receivers remains lacking. Here, we introduce an integrative modelling framework that recapitulates the movement and detection processes that generate detections to reconstruct fine‐scale movements and patterns of space use. This framework is supported by a new family of algorithms designed for detection and depth observations and can be flexibly extended to incorporate other data types. Using simulation, we illustrate applications of our framework and evaluate algorithm utility and sensitivity in different settings. As a case study, we analyse movement data collected from the Critically Endangered flapper skate (Dipturus intermedius) in Scotland. We show that our methods can be used to reconstruct fine‐scale movement paths, patterns of space use and support habitat preference analyses. For reconstructing patterns of space use, simulations show that the methods are consistently more instructive than the most widely used alternative approach (the mean‐position algorithm), particularly in clustered receiver arrays. For flapper skate, the reconstruction of movements reveals responses to disturbance, fine‐scale spatial partitioning and patterns of space use with significant implications for marine management. We conclude that this framework represents a widely applicable methodological advance with applications to studies of pelagic, demersal and benthic species across multiple spatiotemporal scales.\",\"PeriodicalId\":208,\"journal\":{\"name\":\"Methods in Ecology and Evolution\",\"volume\":\"14 10\",\"pages\":\"2626-2638\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.14193\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in Ecology and Evolution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.14193\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.14193","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
An integrative modelling framework for passive acoustic telemetry
Passive acoustic telemetry is widely used to study the movements of aquatic animals. However, a holistic, mechanistic modelling framework that permits the reconstruction of fine‐scale movements and emergent patterns of space use from detections at receivers remains lacking. Here, we introduce an integrative modelling framework that recapitulates the movement and detection processes that generate detections to reconstruct fine‐scale movements and patterns of space use. This framework is supported by a new family of algorithms designed for detection and depth observations and can be flexibly extended to incorporate other data types. Using simulation, we illustrate applications of our framework and evaluate algorithm utility and sensitivity in different settings. As a case study, we analyse movement data collected from the Critically Endangered flapper skate (Dipturus intermedius) in Scotland. We show that our methods can be used to reconstruct fine‐scale movement paths, patterns of space use and support habitat preference analyses. For reconstructing patterns of space use, simulations show that the methods are consistently more instructive than the most widely used alternative approach (the mean‐position algorithm), particularly in clustered receiver arrays. For flapper skate, the reconstruction of movements reveals responses to disturbance, fine‐scale spatial partitioning and patterns of space use with significant implications for marine management. We conclude that this framework represents a widely applicable methodological advance with applications to studies of pelagic, demersal and benthic species across multiple spatiotemporal scales.
期刊介绍:
A British Ecological Society journal, Methods in Ecology and Evolution (MEE) promotes the development of new methods in ecology and evolution, and facilitates their dissemination and uptake by the research community. MEE brings together papers from previously disparate sub-disciplines to provide a single forum for tracking methodological developments in all areas.
MEE publishes methodological papers in any area of ecology and evolution, including:
-Phylogenetic analysis
-Statistical methods
-Conservation & management
-Theoretical methods
-Practical methods, including lab and field
-This list is not exhaustive, and we welcome enquiries about possible submissions. Methods are defined in the widest terms and may be analytical, practical or conceptual.
A primary aim of the journal is to maximise the uptake of techniques by the community. We recognise that a major stumbling block in the uptake and application of new methods is the accessibility of methods. For example, users may need computer code, example applications or demonstrations of methods.