Viktor Hartung, Philipp Gruschwitz, Henner Huflage, Anne Marie Augustin, Florian Kleefeldt, Dominik Peter, Sven Lichthardt, Süleyman Ergün, Thorsten Alexander Bley, Jan-Peter Grunz, Bernhard Petritsch
{"title":"光子计数探测器CT用于体外灌注人体尸体模型中的股骨支架成像。","authors":"Viktor Hartung, Philipp Gruschwitz, Henner Huflage, Anne Marie Augustin, Florian Kleefeldt, Dominik Peter, Sven Lichthardt, Süleyman Ergün, Thorsten Alexander Bley, Jan-Peter Grunz, Bernhard Petritsch","doi":"10.1097/RLI.0000000000001019","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>This study aims to compare the performance of first-generation dual-source photon-counting detector computed tomography (PCD-CT) to third-generation dual-source energy-integrating detector (EID-CT) regarding stent imaging in the femoral arterial runoff.</p><p><strong>Methods: </strong>Continuous extracorporeal perfusion was established in 1 human cadaver using an inguinal and infragenicular access and peristaltic pump. Seven peripheral stents were implanted into both superior femoral arteries by means of percutaneous angioplasty. Radiation dose-equivalent CT angiographies (high-/medium-/low-dose: 10/5/3 mGy) with constant tube voltage of 120 kVp, matching iterative reconstruction algorithm levels, and convolution kernels were used both with PCD-CT and EID-CT. In-stent lumen visibility, luminal and in-stent attenuation as well as contrast-to-noise ratio (CNR) were assessed via region of interest and diameter measurements. Results were compared using analyses of variance and regression analyses.</p><p><strong>Results: </strong>Maximum in-stent lumen visibility achieved with PCD-CT was 94.48% ± 2.62%. The PCD-CT protocol with the lowest lumen visibility (BV40: 78.93% ± 4.67%) performed equal to the EID-CT protocol with the best lumen visibility (BV59: 79.49% ± 2.64%, P > 0.999). Photon-counting detector CT yielded superior CNR compared with EID-CT regardless of kernel and dose level ( P < 0.001). Maximum CNR was 48.8 ± 17.4 in PCD-CT versus 31.28 ± 5.7 in EID-CT (both BV40, high-dose). The theoretical dose reduction potential of PCD-CT over EID-CT was established at 88% (BV40), 83% (BV48/49), and 73% (BV59/60), respectively. In-stent attenuation was not significantly different from luminal attenuation outside stents in any protocol.</p><p><strong>Conclusions: </strong>With superior lumen visibility and CNR, PCD-CT allowed for noticeable dose reduction over EID-CT while maintaining image quality in a continuously perfused human cadaveric model.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"320-327"},"PeriodicalIF":7.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photon-Counting Detector CT for Femoral Stent Imaging in an Extracorporeally Perfused Human Cadaveric Model.\",\"authors\":\"Viktor Hartung, Philipp Gruschwitz, Henner Huflage, Anne Marie Augustin, Florian Kleefeldt, Dominik Peter, Sven Lichthardt, Süleyman Ergün, Thorsten Alexander Bley, Jan-Peter Grunz, Bernhard Petritsch\",\"doi\":\"10.1097/RLI.0000000000001019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>This study aims to compare the performance of first-generation dual-source photon-counting detector computed tomography (PCD-CT) to third-generation dual-source energy-integrating detector (EID-CT) regarding stent imaging in the femoral arterial runoff.</p><p><strong>Methods: </strong>Continuous extracorporeal perfusion was established in 1 human cadaver using an inguinal and infragenicular access and peristaltic pump. Seven peripheral stents were implanted into both superior femoral arteries by means of percutaneous angioplasty. Radiation dose-equivalent CT angiographies (high-/medium-/low-dose: 10/5/3 mGy) with constant tube voltage of 120 kVp, matching iterative reconstruction algorithm levels, and convolution kernels were used both with PCD-CT and EID-CT. In-stent lumen visibility, luminal and in-stent attenuation as well as contrast-to-noise ratio (CNR) were assessed via region of interest and diameter measurements. Results were compared using analyses of variance and regression analyses.</p><p><strong>Results: </strong>Maximum in-stent lumen visibility achieved with PCD-CT was 94.48% ± 2.62%. The PCD-CT protocol with the lowest lumen visibility (BV40: 78.93% ± 4.67%) performed equal to the EID-CT protocol with the best lumen visibility (BV59: 79.49% ± 2.64%, P > 0.999). Photon-counting detector CT yielded superior CNR compared with EID-CT regardless of kernel and dose level ( P < 0.001). Maximum CNR was 48.8 ± 17.4 in PCD-CT versus 31.28 ± 5.7 in EID-CT (both BV40, high-dose). The theoretical dose reduction potential of PCD-CT over EID-CT was established at 88% (BV40), 83% (BV48/49), and 73% (BV59/60), respectively. In-stent attenuation was not significantly different from luminal attenuation outside stents in any protocol.</p><p><strong>Conclusions: </strong>With superior lumen visibility and CNR, PCD-CT allowed for noticeable dose reduction over EID-CT while maintaining image quality in a continuously perfused human cadaveric model.</p>\",\"PeriodicalId\":14486,\"journal\":{\"name\":\"Investigative Radiology\",\"volume\":\" \",\"pages\":\"320-327\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RLI.0000000000001019\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001019","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Photon-Counting Detector CT for Femoral Stent Imaging in an Extracorporeally Perfused Human Cadaveric Model.
Background and aims: This study aims to compare the performance of first-generation dual-source photon-counting detector computed tomography (PCD-CT) to third-generation dual-source energy-integrating detector (EID-CT) regarding stent imaging in the femoral arterial runoff.
Methods: Continuous extracorporeal perfusion was established in 1 human cadaver using an inguinal and infragenicular access and peristaltic pump. Seven peripheral stents were implanted into both superior femoral arteries by means of percutaneous angioplasty. Radiation dose-equivalent CT angiographies (high-/medium-/low-dose: 10/5/3 mGy) with constant tube voltage of 120 kVp, matching iterative reconstruction algorithm levels, and convolution kernels were used both with PCD-CT and EID-CT. In-stent lumen visibility, luminal and in-stent attenuation as well as contrast-to-noise ratio (CNR) were assessed via region of interest and diameter measurements. Results were compared using analyses of variance and regression analyses.
Results: Maximum in-stent lumen visibility achieved with PCD-CT was 94.48% ± 2.62%. The PCD-CT protocol with the lowest lumen visibility (BV40: 78.93% ± 4.67%) performed equal to the EID-CT protocol with the best lumen visibility (BV59: 79.49% ± 2.64%, P > 0.999). Photon-counting detector CT yielded superior CNR compared with EID-CT regardless of kernel and dose level ( P < 0.001). Maximum CNR was 48.8 ± 17.4 in PCD-CT versus 31.28 ± 5.7 in EID-CT (both BV40, high-dose). The theoretical dose reduction potential of PCD-CT over EID-CT was established at 88% (BV40), 83% (BV48/49), and 73% (BV59/60), respectively. In-stent attenuation was not significantly different from luminal attenuation outside stents in any protocol.
Conclusions: With superior lumen visibility and CNR, PCD-CT allowed for noticeable dose reduction over EID-CT while maintaining image quality in a continuously perfused human cadaveric model.
期刊介绍:
Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.