应用HA-GEL系统的eMSCs修复癌症子宫内膜异位治疗后受损子宫内膜的探讨。

IF 3.2 3区 生物学 Q3 CELL BIOLOGY Cell and Tissue Research Pub Date : 2023-11-01 Epub Date: 2023-09-28 DOI:10.1007/s00441-023-03831-0
Wei Liu, Mengxin Hao, Yuhui Xu, Xiaojun Ren, Jiali Hu, Lulu Wang, Xiaojun Chen, Qiaoying Lv
{"title":"应用HA-GEL系统的eMSCs修复癌症子宫内膜异位治疗后受损子宫内膜的探讨。","authors":"Wei Liu, Mengxin Hao, Yuhui Xu, Xiaojun Ren, Jiali Hu, Lulu Wang, Xiaojun Chen, Qiaoying Lv","doi":"10.1007/s00441-023-03831-0","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the high complete response rate of fertility-sparing treatment in early-stage endometrial cancer (EC), the low pregnancy rate is a clinical challenge. Whether endometrium-derived mesenchymal stem cells (eMSCs) can repair damaged endometrium after EC reversal remains unclear. This study explored the potential therapeutic effects of eMSCs with suitable scaffold materials on endometrial damage caused by EC. Here, appropriate engineering scaffold materials were compared to identify the most suitable materials to carry eMSCs. Then, safety and efficacy evaluations of eMSCs with a suitable hyaluronic acid hydrogel (eMSCs/HA-GEL) were investigated in in vivo experiments with subcutaneous xenotransplantation in Balb/C nude mice and a model of endometrial mechanical injury in rats. HA-GEL has minimal cytotoxicity to eMSCs compared to other materials. Then, in vitro experiments demonstrate that eMSCs/HA-GEL enhance the inhibitory effects of progestins on EC cell biological behaviors. eMSCs/HA-GEL significantly inhibit EC cell growth and have no potential safety hazards of spontaneous tumorigenesis in Balb/C nude mouse subcutaneous xenotransplantation assays. eMSCs/HA-GEL intrauterine transplantation effectively increases endometrial thickness and glandular number, improves endometrial blood supply, reduces fibrotic areas, and improves pregnancy rates in a rat endometrial mechanical injury model. GFP-eMSCs/HA-GEL intrauterine transplantation in rats shows more GFP-eMSCs in the endometrium than GFP-eMSCs transplantation alone, and no tumor formation or suspicious cell nodules are found in the liver, kidney, or lung tissues. Our results reveal the safety and efficacy of eMSCs/HA-GEL in animal models and provide preliminary evidence for the use of eMSCs/HA-GEL as a treatment for EC-related endometrial damage.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of eMSCs with HA-GEL system in repairing damaged endometrium after endometrial cancer with fertility-sparing treatment.\",\"authors\":\"Wei Liu, Mengxin Hao, Yuhui Xu, Xiaojun Ren, Jiali Hu, Lulu Wang, Xiaojun Chen, Qiaoying Lv\",\"doi\":\"10.1007/s00441-023-03831-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the high complete response rate of fertility-sparing treatment in early-stage endometrial cancer (EC), the low pregnancy rate is a clinical challenge. Whether endometrium-derived mesenchymal stem cells (eMSCs) can repair damaged endometrium after EC reversal remains unclear. This study explored the potential therapeutic effects of eMSCs with suitable scaffold materials on endometrial damage caused by EC. Here, appropriate engineering scaffold materials were compared to identify the most suitable materials to carry eMSCs. Then, safety and efficacy evaluations of eMSCs with a suitable hyaluronic acid hydrogel (eMSCs/HA-GEL) were investigated in in vivo experiments with subcutaneous xenotransplantation in Balb/C nude mice and a model of endometrial mechanical injury in rats. HA-GEL has minimal cytotoxicity to eMSCs compared to other materials. Then, in vitro experiments demonstrate that eMSCs/HA-GEL enhance the inhibitory effects of progestins on EC cell biological behaviors. eMSCs/HA-GEL significantly inhibit EC cell growth and have no potential safety hazards of spontaneous tumorigenesis in Balb/C nude mouse subcutaneous xenotransplantation assays. eMSCs/HA-GEL intrauterine transplantation effectively increases endometrial thickness and glandular number, improves endometrial blood supply, reduces fibrotic areas, and improves pregnancy rates in a rat endometrial mechanical injury model. GFP-eMSCs/HA-GEL intrauterine transplantation in rats shows more GFP-eMSCs in the endometrium than GFP-eMSCs transplantation alone, and no tumor formation or suspicious cell nodules are found in the liver, kidney, or lung tissues. Our results reveal the safety and efficacy of eMSCs/HA-GEL in animal models and provide preliminary evidence for the use of eMSCs/HA-GEL as a treatment for EC-related endometrial damage.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-023-03831-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-023-03831-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管早期癌症(EC)保留受精治疗的完全缓解率很高,但低妊娠率是一个临床挑战。子宫内膜来源的间充质干细胞(eMSC)能否修复EC逆转后受损的子宫内膜尚不清楚。本研究探讨了eMSC与合适的支架材料对EC引起的子宫内膜损伤的潜在治疗作用。在此,比较了合适的工程支架材料,以确定最适合携带eMSC的材料。然后,在Balb/C裸鼠皮下异种移植和大鼠子宫内膜机械损伤模型的体内实验中,研究了合适的透明质酸水凝胶(eMSCs/HA-GEL)对eMSCs的安全性和有效性评价。与其他材料相比,HA-GEL对eMSC的细胞毒性最小。然后,体外实验证明eMSCs/HA-GEL增强了孕激素对EC细胞生物学行为的抑制作用。eMSCs/HA-GEL在Balb/C裸鼠皮下异种移植试验中显著抑制EC细胞生长,并且没有自发肿瘤发生的潜在安全隐患。在大鼠子宫内膜机械损伤模型中,eMSCs/HA-GEL宫内移植可有效增加子宫内膜厚度和腺体数量,改善子宫内膜血液供应,减少纤维化面积,并提高妊娠率。大鼠GFP-eMSCs/HA-GEL宫内移植显示,与单独的GFP-eMSC移植相比,子宫内膜中的GFP-eMSCs更多,并且在肝、肾或肺组织中没有发现肿瘤形成或可疑细胞结节。我们的研究结果揭示了eMSCs/HA-GEL在动物模型中的安全性和有效性,并为使用eMSCs/HA-GEL治疗EC相关子宫内膜损伤提供了初步证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploration of eMSCs with HA-GEL system in repairing damaged endometrium after endometrial cancer with fertility-sparing treatment.

Despite the high complete response rate of fertility-sparing treatment in early-stage endometrial cancer (EC), the low pregnancy rate is a clinical challenge. Whether endometrium-derived mesenchymal stem cells (eMSCs) can repair damaged endometrium after EC reversal remains unclear. This study explored the potential therapeutic effects of eMSCs with suitable scaffold materials on endometrial damage caused by EC. Here, appropriate engineering scaffold materials were compared to identify the most suitable materials to carry eMSCs. Then, safety and efficacy evaluations of eMSCs with a suitable hyaluronic acid hydrogel (eMSCs/HA-GEL) were investigated in in vivo experiments with subcutaneous xenotransplantation in Balb/C nude mice and a model of endometrial mechanical injury in rats. HA-GEL has minimal cytotoxicity to eMSCs compared to other materials. Then, in vitro experiments demonstrate that eMSCs/HA-GEL enhance the inhibitory effects of progestins on EC cell biological behaviors. eMSCs/HA-GEL significantly inhibit EC cell growth and have no potential safety hazards of spontaneous tumorigenesis in Balb/C nude mouse subcutaneous xenotransplantation assays. eMSCs/HA-GEL intrauterine transplantation effectively increases endometrial thickness and glandular number, improves endometrial blood supply, reduces fibrotic areas, and improves pregnancy rates in a rat endometrial mechanical injury model. GFP-eMSCs/HA-GEL intrauterine transplantation in rats shows more GFP-eMSCs in the endometrium than GFP-eMSCs transplantation alone, and no tumor formation or suspicious cell nodules are found in the liver, kidney, or lung tissues. Our results reveal the safety and efficacy of eMSCs/HA-GEL in animal models and provide preliminary evidence for the use of eMSCs/HA-GEL as a treatment for EC-related endometrial damage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
期刊最新文献
Exploring the contribution of Zfp521/ZNF521 on primary hematopoietic stem/progenitor cells and leukemia progression. Olfactory and gustatory chemical sensor systems in the African turquoise killifish: Insights from morphology. Regulation of the gap junction interplay during postnatal development in the rat epididymis. Revisiting the human umbilical cord epithelium. An atypical epithelial sheath with distinctive features. Mechanical stimulation promotes the maturation of cardiomyocyte-like cells from P19 cells and the function in a mouse model of myocardial infarction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1