从全基因组数据推断中国西南两个苗族苗族的精细遗传图谱和混合史。

4区 生物学 Q2 Medicine Human Biology Pub Date : 2021-01-01 DOI:10.1353/hub.2021.0010
Hui Tan, Rui Wang, Chuan-Chao Wang
{"title":"从全基因组数据推断中国西南两个苗族苗族的精细遗传图谱和混合史。","authors":"Hui Tan, Rui Wang, Chuan-Chao Wang","doi":"10.1353/hub.2021.0010","DOIUrl":null,"url":null,"abstract":"<p><p>As the dominant indigenous minority in southern China, Hmong-Mien-speaking Miao people were thought to be the descendants of Neolithic Yangtze rice farmers. However, the fine-scale population structure and genetic profile of the Miao populations remain unclear due to the limited Miao samples from southern China and Southeast Asia. We genotyped 19 individuals from the two largest Miao tribes in Guizhou Province (Southwest China) via SNP chips and co-analyzed the data with published modern and ancient East Asians. The Guizhou Miao displayed a closer genomic affinity with present-day and Neolithic to Iron Age southern East Asians (SEAs) than with most northern East Asians (NEAs). The genetic substructure within Miao groups was driven by different levels of genetic interaction with other ethnolinguistic groups: Hunan Miao (Central China) harbored higher proportions of NEA-related ancestry; Guizhou Miao (Southwest China) and Vietnam Miao (mainland Southeast Asia) received additional gene flow mainly from surrounding groups with Tai-Kadai-related ancestry. There were also more complex admixture events in the newly studied groups between Guizhou Xijiang Miao and surrounding populations compared with Guizhou Congjiang Miao. The qpAdm model further demonstrated that the primary ancestry of Hunan Miao, Guizhou Miao studied here, and Vietnam Miao derived from ancient SEA-related ancestry (represented by coastal early Neolithic SEA Liangdao2), with the additional gene flow from ancient NEA-related ancestry (represented by spatiotemporally inland Yellow River farmers), with slightly different proportions. Our genomic evidence reveals the complex and distinct demographic history of different Miao tribes.</p>","PeriodicalId":13053,"journal":{"name":"Human Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-Scale Genetic Profile and Admixture History of Two Hmong-Mien-Speaking Miao Tribes from Southwest China Inferred from Genome-Wide Data.\",\"authors\":\"Hui Tan, Rui Wang, Chuan-Chao Wang\",\"doi\":\"10.1353/hub.2021.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the dominant indigenous minority in southern China, Hmong-Mien-speaking Miao people were thought to be the descendants of Neolithic Yangtze rice farmers. However, the fine-scale population structure and genetic profile of the Miao populations remain unclear due to the limited Miao samples from southern China and Southeast Asia. We genotyped 19 individuals from the two largest Miao tribes in Guizhou Province (Southwest China) via SNP chips and co-analyzed the data with published modern and ancient East Asians. The Guizhou Miao displayed a closer genomic affinity with present-day and Neolithic to Iron Age southern East Asians (SEAs) than with most northern East Asians (NEAs). The genetic substructure within Miao groups was driven by different levels of genetic interaction with other ethnolinguistic groups: Hunan Miao (Central China) harbored higher proportions of NEA-related ancestry; Guizhou Miao (Southwest China) and Vietnam Miao (mainland Southeast Asia) received additional gene flow mainly from surrounding groups with Tai-Kadai-related ancestry. There were also more complex admixture events in the newly studied groups between Guizhou Xijiang Miao and surrounding populations compared with Guizhou Congjiang Miao. The qpAdm model further demonstrated that the primary ancestry of Hunan Miao, Guizhou Miao studied here, and Vietnam Miao derived from ancient SEA-related ancestry (represented by coastal early Neolithic SEA Liangdao2), with the additional gene flow from ancient NEA-related ancestry (represented by spatiotemporally inland Yellow River farmers), with slightly different proportions. Our genomic evidence reveals the complex and distinct demographic history of different Miao tribes.</p>\",\"PeriodicalId\":13053,\"journal\":{\"name\":\"Human Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1353/hub.2021.0010\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1353/hub.2021.0010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

苗族作为中国南方占主导地位的土著少数民族,被认为是新石器时代长江稻农的后裔。然而,由于来自中国南部和东南亚的苗族样本有限,苗族种群的精细种群结构和遗传图谱仍不清楚。我们通过SNP芯片对来自贵州省(中国西南部)两个最大的苗族部落的19个人进行了基因分型,并与已发表的现代和古代东亚人共同分析了数据。贵州苗族与现今和新石器时代至铁器时代的南部东亚人(SEA)的基因组亲缘关系比与大多数东北亚人(NEA)的基因组密切。苗族群体内部的遗传亚结构是由与其他民族语言群体不同程度的遗传相互作用驱动的:湖南苗族(华中)具有较高比例的NEA相关祖先;贵州苗(中国西南地区)和越南苗(东南亚大陆)主要从周围具有戴卡代相关祖先的群体获得额外的基因流。与贵州从江苗族相比,贵州西江苗族与周边人群之间的新研究群体中也存在更复杂的混合事件。qpAdm模型进一步证明,湖南苗族、贵州苗族和越南苗族的原始祖先来源于古代SEA相关祖先(以沿海新石器时代早期SEA两道2为代表),而额外的基因流来源于古代NEA相关祖先(由时空上的黄河内陆农民代表),比例略有不同。我们的基因组证据揭示了不同苗族部落复杂而独特的人口统计历史。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fine-Scale Genetic Profile and Admixture History of Two Hmong-Mien-Speaking Miao Tribes from Southwest China Inferred from Genome-Wide Data.

As the dominant indigenous minority in southern China, Hmong-Mien-speaking Miao people were thought to be the descendants of Neolithic Yangtze rice farmers. However, the fine-scale population structure and genetic profile of the Miao populations remain unclear due to the limited Miao samples from southern China and Southeast Asia. We genotyped 19 individuals from the two largest Miao tribes in Guizhou Province (Southwest China) via SNP chips and co-analyzed the data with published modern and ancient East Asians. The Guizhou Miao displayed a closer genomic affinity with present-day and Neolithic to Iron Age southern East Asians (SEAs) than with most northern East Asians (NEAs). The genetic substructure within Miao groups was driven by different levels of genetic interaction with other ethnolinguistic groups: Hunan Miao (Central China) harbored higher proportions of NEA-related ancestry; Guizhou Miao (Southwest China) and Vietnam Miao (mainland Southeast Asia) received additional gene flow mainly from surrounding groups with Tai-Kadai-related ancestry. There were also more complex admixture events in the newly studied groups between Guizhou Xijiang Miao and surrounding populations compared with Guizhou Congjiang Miao. The qpAdm model further demonstrated that the primary ancestry of Hunan Miao, Guizhou Miao studied here, and Vietnam Miao derived from ancient SEA-related ancestry (represented by coastal early Neolithic SEA Liangdao2), with the additional gene flow from ancient NEA-related ancestry (represented by spatiotemporally inland Yellow River farmers), with slightly different proportions. Our genomic evidence reveals the complex and distinct demographic history of different Miao tribes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Biology
Human Biology 生物-生物学
CiteScore
1.90
自引率
0.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: Human Biology publishes original scientific articles, brief communications, letters to the editor, and review articles on the general topic of biological anthropology. Our main focus is understanding human biological variation and human evolution through a broad range of approaches. We encourage investigators to submit any study on human biological diversity presented from an evolutionary or adaptive perspective. Priority will be given to interdisciplinary studies that seek to better explain the interaction between cultural processes and biological processes in our evolution. Methodological papers are also encouraged. Any computational approach intended to summarize cultural variation is encouraged. Studies that are essentially descriptive or concern only a limited geographic area are acceptable only when they have a wider relevance to understanding human biological variation. Manuscripts may cover any of the following disciplines, once the anthropological focus is apparent: human population genetics, evolutionary and genetic demography, quantitative genetics, evolutionary biology, ancient DNA studies, biological diversity interpreted in terms of adaptation (biometry, physical anthropology), and interdisciplinary research linking biological and cultural diversity (inferred from linguistic variability, ethnological diversity, archaeological evidence, etc.).
期刊最新文献
A Review of Anthropological Adaptations of Humans Living in Extreme Conditions and Health Implications Dimensional Changes in the Skulls of Ancient Children with Age in Xinjiang, China More than Ethics: Changing Approaches to Research in Human Biology Mitochondrial DNA Variation in Southern Tunisian Populations The Origin and Dispersal of Austroasiatic Languages from the Perspectives of Linguistics, Archeology, and Genetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1