Linda S. Johnson MD, PhD, Alexandra Måneheim MD, Magdalena Slusarczyk MSc, Agnieszka Grotek BSc, Olga Witkowska MSc, Justinas Bacevicius MD, Leif Sörnmo PhD, Marek Dziubinski PhD, Sanjeev Bhavnani MD, Jeffrey S. Healey MD, MSc, Gunnar Engström MD, PhD
{"title":"Can 24 h的动态心电图是否用于对患者进行分诊以进行扩展监测?","authors":"Linda S. Johnson MD, PhD, Alexandra Måneheim MD, Magdalena Slusarczyk MSc, Agnieszka Grotek BSc, Olga Witkowska MSc, Justinas Bacevicius MD, Leif Sörnmo PhD, Marek Dziubinski PhD, Sanjeev Bhavnani MD, Jeffrey S. Healey MD, MSc, Gunnar Engström MD, PhD","doi":"10.1111/anec.13090","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Access to long-term ambulatory recording to detect atrial fibrillation (AF) is limited for economical and practical reasons. We aimed to determine whether 24 h ECG (24hECG) data can predict AF detection on extended cardiac monitoring.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We included all US patients from 2020, aged 17–100 years, who were monitored for 2–30 days using the PocketECG device (MEDICALgorithmics), without AF ≥30 s on the first day (<i>n</i> = 18,220, mean age 64.4 years, 42.4% male). The population was randomly split into equal training and testing datasets. A Lasso model was used to predict AF episodes ≥30 s occurring on days 2–30.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The final model included maximum heart rate, number of premature atrial complexes (PACs), fastest rate during PAC couplets and triplets, fastest rate during premature ventricular couplets and number of ventricular tachycardia runs ≥4 beats, and had good discrimination (ROC statistic 0.7497, 95% CI 0.7336–0.7659) in the testing dataset. Inclusion of age and sex did not improve discrimination. A model based only on age and sex had substantially poorer discrimination, ROC statistic 0.6542 (95% CI 0.6364–0.6720). The prevalence of observed AF in the testing dataset increased by quintile of predicted risk: 0.4% in Q1, 2.7% in Q2, 6.2% in Q3, 11.4% in Q4, and 15.9% in Q5. In Q1, the negative predictive value for AF was 99.6%.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>By using 24hECG data, long-term monitoring for AF can safely be avoided in 20% of an unselected patient population whereas an overall risk of 9% in the remaining 80% of the population warrants repeated or extended monitoring.</p>\n </section>\n </div>","PeriodicalId":8074,"journal":{"name":"Annals of Noninvasive Electrocardiology","volume":"28 6","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anec.13090","citationCount":"0","resultStr":"{\"title\":\"Can 24 h of ambulatory ECG be used to triage patients to extended monitoring?\",\"authors\":\"Linda S. Johnson MD, PhD, Alexandra Måneheim MD, Magdalena Slusarczyk MSc, Agnieszka Grotek BSc, Olga Witkowska MSc, Justinas Bacevicius MD, Leif Sörnmo PhD, Marek Dziubinski PhD, Sanjeev Bhavnani MD, Jeffrey S. Healey MD, MSc, Gunnar Engström MD, PhD\",\"doi\":\"10.1111/anec.13090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Access to long-term ambulatory recording to detect atrial fibrillation (AF) is limited for economical and practical reasons. We aimed to determine whether 24 h ECG (24hECG) data can predict AF detection on extended cardiac monitoring.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We included all US patients from 2020, aged 17–100 years, who were monitored for 2–30 days using the PocketECG device (MEDICALgorithmics), without AF ≥30 s on the first day (<i>n</i> = 18,220, mean age 64.4 years, 42.4% male). The population was randomly split into equal training and testing datasets. A Lasso model was used to predict AF episodes ≥30 s occurring on days 2–30.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The final model included maximum heart rate, number of premature atrial complexes (PACs), fastest rate during PAC couplets and triplets, fastest rate during premature ventricular couplets and number of ventricular tachycardia runs ≥4 beats, and had good discrimination (ROC statistic 0.7497, 95% CI 0.7336–0.7659) in the testing dataset. Inclusion of age and sex did not improve discrimination. A model based only on age and sex had substantially poorer discrimination, ROC statistic 0.6542 (95% CI 0.6364–0.6720). The prevalence of observed AF in the testing dataset increased by quintile of predicted risk: 0.4% in Q1, 2.7% in Q2, 6.2% in Q3, 11.4% in Q4, and 15.9% in Q5. In Q1, the negative predictive value for AF was 99.6%.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>By using 24hECG data, long-term monitoring for AF can safely be avoided in 20% of an unselected patient population whereas an overall risk of 9% in the remaining 80% of the population warrants repeated or extended monitoring.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8074,\"journal\":{\"name\":\"Annals of Noninvasive Electrocardiology\",\"volume\":\"28 6\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anec.13090\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Noninvasive Electrocardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anec.13090\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Noninvasive Electrocardiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anec.13090","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Can 24 h of ambulatory ECG be used to triage patients to extended monitoring?
Background
Access to long-term ambulatory recording to detect atrial fibrillation (AF) is limited for economical and practical reasons. We aimed to determine whether 24 h ECG (24hECG) data can predict AF detection on extended cardiac monitoring.
Methods
We included all US patients from 2020, aged 17–100 years, who were monitored for 2–30 days using the PocketECG device (MEDICALgorithmics), without AF ≥30 s on the first day (n = 18,220, mean age 64.4 years, 42.4% male). The population was randomly split into equal training and testing datasets. A Lasso model was used to predict AF episodes ≥30 s occurring on days 2–30.
Results
The final model included maximum heart rate, number of premature atrial complexes (PACs), fastest rate during PAC couplets and triplets, fastest rate during premature ventricular couplets and number of ventricular tachycardia runs ≥4 beats, and had good discrimination (ROC statistic 0.7497, 95% CI 0.7336–0.7659) in the testing dataset. Inclusion of age and sex did not improve discrimination. A model based only on age and sex had substantially poorer discrimination, ROC statistic 0.6542 (95% CI 0.6364–0.6720). The prevalence of observed AF in the testing dataset increased by quintile of predicted risk: 0.4% in Q1, 2.7% in Q2, 6.2% in Q3, 11.4% in Q4, and 15.9% in Q5. In Q1, the negative predictive value for AF was 99.6%.
Conclusion
By using 24hECG data, long-term monitoring for AF can safely be avoided in 20% of an unselected patient population whereas an overall risk of 9% in the remaining 80% of the population warrants repeated or extended monitoring.
期刊介绍:
The ANNALS OF NONINVASIVE ELECTROCARDIOLOGY (A.N.E) is an online only journal that incorporates ongoing advances in the clinical application and technology of traditional and new ECG-based techniques in the diagnosis and treatment of cardiac patients.
ANE is the first journal in an evolving subspecialty that incorporates ongoing advances in the clinical application and technology of traditional and new ECG-based techniques in the diagnosis and treatment of cardiac patients. The publication includes topics related to 12-lead, exercise and high-resolution electrocardiography, arrhythmias, ischemia, repolarization phenomena, heart rate variability, circadian rhythms, bioengineering technology, signal-averaged ECGs, T-wave alternans and automatic external defibrillation.
ANE publishes peer-reviewed articles of interest to clinicians and researchers in the field of noninvasive electrocardiology. Original research, clinical studies, state-of-the-art reviews, case reports, technical notes, and letters to the editors will be published to meet future demands in this field.