{"title":"Rab32和Rab38通过调节破骨细胞中的细胞内交通来维持骨稳态。","authors":"Kanako Tokuda, Shiou-Ling Lu, Zidi Zhang, Yumiko Kato, Siyu Chen, Kazuya Noda, Katsutoshi Hirose, Yu Usami, Narikazu Uzawa, Shinya Murakami, Satoru Toyosawa, Mitsunori Fukuda, Ge-Hong Sun-Wada, Yoh Wada, Takeshi Noda","doi":"10.1247/csf.23061","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoclasts play a crucial role in bone homeostasis by forming resorption pits on bone surfaces, resulting in bone resorption. The osteoclast expression of Rab38 protein is highly induced during differentiation from macrophages. Here we generated mice with double knockout (DKO) of Rab38 and its paralogue, Rab32, to investigate the roles of these proteins in osteoclasts. Bone marrow-derived macrophages from Rab32/38 DKO mice differentiated normally into osteoclasts in vitro. However, DKO osteoclasts showed reduced bone resorption activity. These osteoclasts also demonstrated defective secretion of tartrate-resistant acid phosphatase and cathepsin K into culture medium. Furthermore, the plasma membrane localization of a3, an osteoclast-specific a subunit of V-ATPase, was abrogated in DKO mice, substantiating the reduced resorption activity. In vivo, Rab32- and Rab38-positive cells were attached to the bone surface. Eight-week-old DKO mice showed significantly thickened trabecular bones in micro-CT and histomorphometry analysis, as well as reduced serum levels of cross-linked C-telopeptide of type I collagen, indicating diminished bone resorption in vivo. In DKO male mice over 10 weeks of age, hyperostosis appeared at the talofibular syndesmosis, the distal junction of the tibia and fibula. Furthermore, middle-aged mice (10 to 12 months of age) exhibited kyphosis, which is not usually observed in wild-type male mice until around 24 months of age. These results indicate that Rab32 and Rab38 contribute to osteoclast function by supporting intracellular traffic, thereby maintaining normal bone homeostasis.Key words: Rab32, Rab38, osteoclast, lysosome-related organelle, secretory lysosome.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496785/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rab32 and Rab38 maintain bone homeostasis by regulating intracellular traffic in osteoclasts.\",\"authors\":\"Kanako Tokuda, Shiou-Ling Lu, Zidi Zhang, Yumiko Kato, Siyu Chen, Kazuya Noda, Katsutoshi Hirose, Yu Usami, Narikazu Uzawa, Shinya Murakami, Satoru Toyosawa, Mitsunori Fukuda, Ge-Hong Sun-Wada, Yoh Wada, Takeshi Noda\",\"doi\":\"10.1247/csf.23061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoclasts play a crucial role in bone homeostasis by forming resorption pits on bone surfaces, resulting in bone resorption. The osteoclast expression of Rab38 protein is highly induced during differentiation from macrophages. Here we generated mice with double knockout (DKO) of Rab38 and its paralogue, Rab32, to investigate the roles of these proteins in osteoclasts. Bone marrow-derived macrophages from Rab32/38 DKO mice differentiated normally into osteoclasts in vitro. However, DKO osteoclasts showed reduced bone resorption activity. These osteoclasts also demonstrated defective secretion of tartrate-resistant acid phosphatase and cathepsin K into culture medium. Furthermore, the plasma membrane localization of a3, an osteoclast-specific a subunit of V-ATPase, was abrogated in DKO mice, substantiating the reduced resorption activity. In vivo, Rab32- and Rab38-positive cells were attached to the bone surface. Eight-week-old DKO mice showed significantly thickened trabecular bones in micro-CT and histomorphometry analysis, as well as reduced serum levels of cross-linked C-telopeptide of type I collagen, indicating diminished bone resorption in vivo. In DKO male mice over 10 weeks of age, hyperostosis appeared at the talofibular syndesmosis, the distal junction of the tibia and fibula. Furthermore, middle-aged mice (10 to 12 months of age) exhibited kyphosis, which is not usually observed in wild-type male mice until around 24 months of age. These results indicate that Rab32 and Rab38 contribute to osteoclast function by supporting intracellular traffic, thereby maintaining normal bone homeostasis.Key words: Rab32, Rab38, osteoclast, lysosome-related organelle, secretory lysosome.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496785/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1247/csf.23061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.23061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Rab32 and Rab38 maintain bone homeostasis by regulating intracellular traffic in osteoclasts.
Osteoclasts play a crucial role in bone homeostasis by forming resorption pits on bone surfaces, resulting in bone resorption. The osteoclast expression of Rab38 protein is highly induced during differentiation from macrophages. Here we generated mice with double knockout (DKO) of Rab38 and its paralogue, Rab32, to investigate the roles of these proteins in osteoclasts. Bone marrow-derived macrophages from Rab32/38 DKO mice differentiated normally into osteoclasts in vitro. However, DKO osteoclasts showed reduced bone resorption activity. These osteoclasts also demonstrated defective secretion of tartrate-resistant acid phosphatase and cathepsin K into culture medium. Furthermore, the plasma membrane localization of a3, an osteoclast-specific a subunit of V-ATPase, was abrogated in DKO mice, substantiating the reduced resorption activity. In vivo, Rab32- and Rab38-positive cells were attached to the bone surface. Eight-week-old DKO mice showed significantly thickened trabecular bones in micro-CT and histomorphometry analysis, as well as reduced serum levels of cross-linked C-telopeptide of type I collagen, indicating diminished bone resorption in vivo. In DKO male mice over 10 weeks of age, hyperostosis appeared at the talofibular syndesmosis, the distal junction of the tibia and fibula. Furthermore, middle-aged mice (10 to 12 months of age) exhibited kyphosis, which is not usually observed in wild-type male mice until around 24 months of age. These results indicate that Rab32 and Rab38 contribute to osteoclast function by supporting intracellular traffic, thereby maintaining normal bone homeostasis.Key words: Rab32, Rab38, osteoclast, lysosome-related organelle, secretory lysosome.