产后雌性小鼠前腹侧室周核(AVPV)的性二型催产素受体表达(OXTR)神经元参与母体行为。

IF 3.3 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of Neuroendocrinology Pub Date : 2023-08-19 DOI:10.1111/jne.13337
Kaustubh Sharma, Armita A. Govar, Bandana Ghimire, Katsuhiko Nishimori, Elizabeth Hammock, Ryoichi Teruyama
{"title":"产后雌性小鼠前腹侧室周核(AVPV)的性二型催产素受体表达(OXTR)神经元参与母体行为。","authors":"Kaustubh Sharma,&nbsp;Armita A. Govar,&nbsp;Bandana Ghimire,&nbsp;Katsuhiko Nishimori,&nbsp;Elizabeth Hammock,&nbsp;Ryoichi Teruyama","doi":"10.1111/jne.13337","DOIUrl":null,"url":null,"abstract":"<p>Maternal care is crucial for the survival and development of offspring. Oxytocin modulates maternal behavior by binding to oxytocin receptors (OXTRs) in various parts of the brain. Previously, we showed that OXTRs are expressed in the anteroventral periventricular nucleus (AVPV) of female, but not male mice. Because the AVPV is involved in the regulation of maternal behavior and oxytocin enhances its induction, this finding leads to the hypothesis that the female specific population of OXTR neurons in the AVPV regulates maternal behavior. To address this hypothesis, OXTR-Venus reporter mice were used to assess if expression levels of OXTR in the AVPV are changed during the postpartum period. The total number of OXTR-Venus neurons was significantly greater in postpartum dams compared to virgin females. To assess efferent projections of the AVPV-OXTR neurons, a Cre-dependent fluorescent protein (tdTomato) expressing a viral vector was injected into one side of the AVPV of female OXTR-Cre mice. Fibers expressing tdTomato were found in hypothalamic areas containing oxytocin neurons (the supraoptic and paraventricular nuclei) and the midbrain areas (the ventral tegmental area and periaqueductal gray) that are involved in the regulation of maternal motivation. To assess if activity of the AVPV-OXTR neurons is involved in the regulation of maternal behaviors, a chemogenetic approach was employed. Specific inhibition of activity of AVPV-OXTR neurons completely abolished pup retrieval and nest building behaviors. Collectively, these findings demonstrate that AVPV-OXTR neurons in postpartum female mice constitute an important node in the neural circuitry that regulates maternal behavior.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jne.13337","citationCount":"0","resultStr":"{\"title\":\"Sexually dimorphic oxytocin receptor-expressing (OXTR) neurons in the anteroventral periventricular nucleus (AVPV) in the postpartum female mouse are involved in maternal behavior\",\"authors\":\"Kaustubh Sharma,&nbsp;Armita A. Govar,&nbsp;Bandana Ghimire,&nbsp;Katsuhiko Nishimori,&nbsp;Elizabeth Hammock,&nbsp;Ryoichi Teruyama\",\"doi\":\"10.1111/jne.13337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Maternal care is crucial for the survival and development of offspring. Oxytocin modulates maternal behavior by binding to oxytocin receptors (OXTRs) in various parts of the brain. Previously, we showed that OXTRs are expressed in the anteroventral periventricular nucleus (AVPV) of female, but not male mice. Because the AVPV is involved in the regulation of maternal behavior and oxytocin enhances its induction, this finding leads to the hypothesis that the female specific population of OXTR neurons in the AVPV regulates maternal behavior. To address this hypothesis, OXTR-Venus reporter mice were used to assess if expression levels of OXTR in the AVPV are changed during the postpartum period. The total number of OXTR-Venus neurons was significantly greater in postpartum dams compared to virgin females. To assess efferent projections of the AVPV-OXTR neurons, a Cre-dependent fluorescent protein (tdTomato) expressing a viral vector was injected into one side of the AVPV of female OXTR-Cre mice. Fibers expressing tdTomato were found in hypothalamic areas containing oxytocin neurons (the supraoptic and paraventricular nuclei) and the midbrain areas (the ventral tegmental area and periaqueductal gray) that are involved in the regulation of maternal motivation. To assess if activity of the AVPV-OXTR neurons is involved in the regulation of maternal behaviors, a chemogenetic approach was employed. Specific inhibition of activity of AVPV-OXTR neurons completely abolished pup retrieval and nest building behaviors. Collectively, these findings demonstrate that AVPV-OXTR neurons in postpartum female mice constitute an important node in the neural circuitry that regulates maternal behavior.</p>\",\"PeriodicalId\":16535,\"journal\":{\"name\":\"Journal of Neuroendocrinology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jne.13337\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jne.13337\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jne.13337","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

产妇护理对后代的生存和发展至关重要。催产素通过与大脑各个部位的催产素受体(OXTR)结合来调节母亲的行为。此前,我们发现OXTR在雌性小鼠的前腹侧室周核(AVPV)中表达,但在雄性小鼠中不表达。由于AVPV参与母亲行为的调节,催产素增强了其诱导作用,这一发现导致了AVPV中OXTR神经元的女性特异性群体调节母亲行为的假设。为了解决这一假设,OXTR Venus报告小鼠被用来评估产后AVPV中OXTR的表达水平是否发生了变化。产后母鼠的OXTR Venus神经元总数明显高于处女母鼠。为了评估AVPV-OXTR神经元的传出投射,将表达病毒载体的Cre依赖性荧光蛋白(tdTomato)注射到雌性OXTR-Cre小鼠的AVPV的一侧。在含有催产素神经元的下丘脑区域(视上核和室旁核)和中脑区域(腹侧被盖区和中脑导水管周围灰质)中发现了表达tdTomato的纤维,这些神经元参与母体动机的调节。为了评估AVPV-OXTR神经元的活性是否参与母体行为的调节,采用了化学遗传学方法。AVPV-OXTR神经元活性的特异性抑制完全消除了幼犬的取回和筑巢行为。总之,这些发现表明,产后雌性小鼠的AVPV-OXTR神经元构成了调节母体行为的神经回路中的一个重要节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sexually dimorphic oxytocin receptor-expressing (OXTR) neurons in the anteroventral periventricular nucleus (AVPV) in the postpartum female mouse are involved in maternal behavior

Maternal care is crucial for the survival and development of offspring. Oxytocin modulates maternal behavior by binding to oxytocin receptors (OXTRs) in various parts of the brain. Previously, we showed that OXTRs are expressed in the anteroventral periventricular nucleus (AVPV) of female, but not male mice. Because the AVPV is involved in the regulation of maternal behavior and oxytocin enhances its induction, this finding leads to the hypothesis that the female specific population of OXTR neurons in the AVPV regulates maternal behavior. To address this hypothesis, OXTR-Venus reporter mice were used to assess if expression levels of OXTR in the AVPV are changed during the postpartum period. The total number of OXTR-Venus neurons was significantly greater in postpartum dams compared to virgin females. To assess efferent projections of the AVPV-OXTR neurons, a Cre-dependent fluorescent protein (tdTomato) expressing a viral vector was injected into one side of the AVPV of female OXTR-Cre mice. Fibers expressing tdTomato were found in hypothalamic areas containing oxytocin neurons (the supraoptic and paraventricular nuclei) and the midbrain areas (the ventral tegmental area and periaqueductal gray) that are involved in the regulation of maternal motivation. To assess if activity of the AVPV-OXTR neurons is involved in the regulation of maternal behaviors, a chemogenetic approach was employed. Specific inhibition of activity of AVPV-OXTR neurons completely abolished pup retrieval and nest building behaviors. Collectively, these findings demonstrate that AVPV-OXTR neurons in postpartum female mice constitute an important node in the neural circuitry that regulates maternal behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroendocrinology
Journal of Neuroendocrinology 医学-内分泌学与代谢
CiteScore
6.40
自引率
6.20%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Journal of Neuroendocrinology provides the principal international focus for the newest ideas in classical neuroendocrinology and its expanding interface with the regulation of behavioural, cognitive, developmental, degenerative and metabolic processes. Through the rapid publication of original manuscripts and provocative review articles, it provides essential reading for basic scientists and clinicians researching in this rapidly expanding field. In determining content, the primary considerations are excellence, relevance and novelty. While Journal of Neuroendocrinology reflects the broad scientific and clinical interests of the BSN membership, the editorial team, led by Professor Julian Mercer, ensures that the journal’s ethos, authorship, content and purpose are those expected of a leading international publication.
期刊最新文献
Photoperiodism, testosterone and adult neurogenesis in canaries (Serinus canaria) The curious case of the hypothalamic-pituitary-gonadal axis dysfunction in subordinate female naked mole-rats (Heterocephalus glaber): No apparent role of opioids and glucocorticoids. Real‐world effectiveness of adjuvant octreotide therapy in patients with pancreatic neuroendocrine tumors at high recurrence risk: A multicenter retrospective cohort study Lack of a genetic risk continuum between pubertal timing in the general population and idiopathic hypogonadotropic hypogonadism PTPRJ is a negative regulator of insulin signaling in neuronal cells, impacting protein biosynthesis, and neurite outgrowth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1