Patricia C. Mazzonetto, Darine Villela, Silvia Souza da Costa, Ana C. V. Krepischi, Fernanda Milanezi, Michele P. Migliavacca, Paulo M. Pierry, Adriano Bonaldi, Luiz Gustavo D. Almeida, Camila Alves De Souza, José Eduardo Kroll, Marcelo G. Paula, Rodrigo Guarischi-Sousa, Cristovam Scapulatempo-Neto, Carla Rosenberg
{"title":"低通全基因组测序是在临床环境中进行拷贝数变异分析的一种可靠且具有成本效益的方法。","authors":"Patricia C. Mazzonetto, Darine Villela, Silvia Souza da Costa, Ana C. V. Krepischi, Fernanda Milanezi, Michele P. Migliavacca, Paulo M. Pierry, Adriano Bonaldi, Luiz Gustavo D. Almeida, Camila Alves De Souza, José Eduardo Kroll, Marcelo G. Paula, Rodrigo Guarischi-Sousa, Cristovam Scapulatempo-Neto, Carla Rosenberg","doi":"10.1111/ahg.12532","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>Next generation sequencing technology has greatly reduced the cost and time required for sequencing a genome. An approach that is rapidly being adopted as an alternative method for CNV analysis is the low-pass whole genome sequencing (LP-WGS). Here, we evaluated the performance of LP-WGS to detect copy number variants (CNVs) in clinical cytogenetics.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>DNA samples with known CNVs detected by chromosomal microarray analyses (CMA) were selected for comparison and used as positive controls; our panel included 44 DNA samples (12 prenatal and 32 postnatal), comprising a total of 55 chromosome imbalances. The selected cases were chosen to provide a wide range of clinically relevant CNVs, the vast majority being associated with intellectual disability or recognizable syndromes. The chromosome imbalances ranged in size from 75 kb to 90.3 Mb, including aneuploidies and two cases of mosaicism.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>All CNVs were successfully detected by LP-WGS, showing a high level of consistency and robust performance of the sequencing method. Notably, the size of chromosome imbalances detected by CMA and LP-WGS were compatible between the two different platforms, which indicates that the resolution and sensitivity of the LP-WGS approach are at least similar to those provided by CMA.</p>\n </section>\n \n <section>\n \n <h3> Discussion</h3>\n \n <p>Our data show the potential use of LP-WGS to detect CNVs in clinical diagnosis and confirm the method as an alternative for chromosome imbalances detection. The diagnostic effectiveness and feasibility of LP-WGS, in this technical validation study, were evidenced by a clinically representative dataset of CNVs that allowed a systematic assessment of the detection power and the accuracy of the sequencing approach. Further, since the software used in this study is commercially available, the method can easily be tested and implemented in a routine diagnostic setting.</p>\n </section>\n </div>","PeriodicalId":8085,"journal":{"name":"Annals of Human Genetics","volume":"88 2","pages":"113-125"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-pass whole genome sequencing is a reliable and cost-effective approach for copy number variant analysis in the clinical setting\",\"authors\":\"Patricia C. Mazzonetto, Darine Villela, Silvia Souza da Costa, Ana C. V. Krepischi, Fernanda Milanezi, Michele P. Migliavacca, Paulo M. Pierry, Adriano Bonaldi, Luiz Gustavo D. Almeida, Camila Alves De Souza, José Eduardo Kroll, Marcelo G. Paula, Rodrigo Guarischi-Sousa, Cristovam Scapulatempo-Neto, Carla Rosenberg\",\"doi\":\"10.1111/ahg.12532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Introduction</h3>\\n \\n <p>Next generation sequencing technology has greatly reduced the cost and time required for sequencing a genome. An approach that is rapidly being adopted as an alternative method for CNV analysis is the low-pass whole genome sequencing (LP-WGS). Here, we evaluated the performance of LP-WGS to detect copy number variants (CNVs) in clinical cytogenetics.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Materials and Methods</h3>\\n \\n <p>DNA samples with known CNVs detected by chromosomal microarray analyses (CMA) were selected for comparison and used as positive controls; our panel included 44 DNA samples (12 prenatal and 32 postnatal), comprising a total of 55 chromosome imbalances. The selected cases were chosen to provide a wide range of clinically relevant CNVs, the vast majority being associated with intellectual disability or recognizable syndromes. The chromosome imbalances ranged in size from 75 kb to 90.3 Mb, including aneuploidies and two cases of mosaicism.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>All CNVs were successfully detected by LP-WGS, showing a high level of consistency and robust performance of the sequencing method. Notably, the size of chromosome imbalances detected by CMA and LP-WGS were compatible between the two different platforms, which indicates that the resolution and sensitivity of the LP-WGS approach are at least similar to those provided by CMA.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Discussion</h3>\\n \\n <p>Our data show the potential use of LP-WGS to detect CNVs in clinical diagnosis and confirm the method as an alternative for chromosome imbalances detection. The diagnostic effectiveness and feasibility of LP-WGS, in this technical validation study, were evidenced by a clinically representative dataset of CNVs that allowed a systematic assessment of the detection power and the accuracy of the sequencing approach. Further, since the software used in this study is commercially available, the method can easily be tested and implemented in a routine diagnostic setting.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8085,\"journal\":{\"name\":\"Annals of Human Genetics\",\"volume\":\"88 2\",\"pages\":\"113-125\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ahg.12532\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ahg.12532","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Low-pass whole genome sequencing is a reliable and cost-effective approach for copy number variant analysis in the clinical setting
Introduction
Next generation sequencing technology has greatly reduced the cost and time required for sequencing a genome. An approach that is rapidly being adopted as an alternative method for CNV analysis is the low-pass whole genome sequencing (LP-WGS). Here, we evaluated the performance of LP-WGS to detect copy number variants (CNVs) in clinical cytogenetics.
Materials and Methods
DNA samples with known CNVs detected by chromosomal microarray analyses (CMA) were selected for comparison and used as positive controls; our panel included 44 DNA samples (12 prenatal and 32 postnatal), comprising a total of 55 chromosome imbalances. The selected cases were chosen to provide a wide range of clinically relevant CNVs, the vast majority being associated with intellectual disability or recognizable syndromes. The chromosome imbalances ranged in size from 75 kb to 90.3 Mb, including aneuploidies and two cases of mosaicism.
Results
All CNVs were successfully detected by LP-WGS, showing a high level of consistency and robust performance of the sequencing method. Notably, the size of chromosome imbalances detected by CMA and LP-WGS were compatible between the two different platforms, which indicates that the resolution and sensitivity of the LP-WGS approach are at least similar to those provided by CMA.
Discussion
Our data show the potential use of LP-WGS to detect CNVs in clinical diagnosis and confirm the method as an alternative for chromosome imbalances detection. The diagnostic effectiveness and feasibility of LP-WGS, in this technical validation study, were evidenced by a clinically representative dataset of CNVs that allowed a systematic assessment of the detection power and the accuracy of the sequencing approach. Further, since the software used in this study is commercially available, the method can easily be tested and implemented in a routine diagnostic setting.
期刊介绍:
Annals of Human Genetics publishes material directly concerned with human genetics or the application of scientific principles and techniques to any aspect of human inheritance. Papers that describe work on other species that may be relevant to human genetics will also be considered. Mathematical models should include examples of application to data where possible.
Authors are welcome to submit Supporting Information, such as data sets or additional figures or tables, that will not be published in the print edition of the journal, but which will be viewable via the online edition and stored on the website.