Da Eun Lee, Kun Hee Park, Joo-Hyun Hong, Seon Hee Kim, Ki-Moon Park, Ki Hyun Kim
{"title":"沙棘果实中三萜类化合物通过促进间充质干细胞C3H10T1/2的成骨细胞分化而发挥的抗骨质疏松作用。","authors":"Da Eun Lee, Kun Hee Park, Joo-Hyun Hong, Seon Hee Kim, Ki-Moon Park, Ki Hyun Kim","doi":"10.1007/s12272-023-01468-9","DOIUrl":null,"url":null,"abstract":"<div><p>In a previous study, we discovered that the ethanolic extract of sea buckthorn (<i>Hippophae rhamnoides</i>) fruits exhibited anti-osteoporosis effects both in vitro and in vivo. Through bioassay-guided fractionation, we identified the hexane fraction (HRH) as the active fraction, which was further fractionated using preparative HPLC. Among the resulting six fractions, HRHF4 showed significant activity. In the present study, we focused on the bioassay-guided isolation of bioactive compounds from the HRHF4 fraction. We successfully identified the active HRHF43 fraction, which led us to the isolation of potential bioactive compounds (<b>1–6</b>). The chemical structures of these compounds were determined using NMR data, LC-MS analysis, and HR-ESI-MS data as four triterpenes, ursolic acid (<b>1</b>), uvaol (<b>2</b>), oleanolic aldehyde (<b>3</b>), and ursolic aldehyde (<b>4</b>), together with two fatty acids, methyl linoleate (<b>5</b>) and ethyl oleate (<b>6</b>). To evaluate the efficacy of promoting osteoblast differentiation and the expression of mRNA biomarkers related to osteogenesis, we tested the isolated compounds in the mouse mesenchymal stem cell line, C3H10T1/2. Alkaline phosphate staining demonstrated that triterpenes (<b>1–4</b>) displayed osteogenic activity. Particularly noteworthy, ursolic aldehyde (<b>4</b>) exhibited the most potent effect, showing an 11.2-fold higher activity at a concentration of 10 μg/mL compared to the negative control. Moreover, ursolic aldehyde (<b>4</b>) upregulated the gene expression of bone formation-related biomarkers, including Runx2, Osterix, Alp, and Osteopontin. These findings suggest that the fruit extract of <i>H. rhamnoides</i> may have potential as a nutraceutical for promoting bone health, with ursolic aldehyde (<b>4</b>) identified as an active constituent.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 9-10","pages":"771 - 781"},"PeriodicalIF":6.9000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-osteoporosis effects of triterpenoids from the fruit of sea buckthorn (Hippophae rhamnoides) through the promotion of osteoblast differentiation in mesenchymal stem cells, C3H10T1/2\",\"authors\":\"Da Eun Lee, Kun Hee Park, Joo-Hyun Hong, Seon Hee Kim, Ki-Moon Park, Ki Hyun Kim\",\"doi\":\"10.1007/s12272-023-01468-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a previous study, we discovered that the ethanolic extract of sea buckthorn (<i>Hippophae rhamnoides</i>) fruits exhibited anti-osteoporosis effects both in vitro and in vivo. Through bioassay-guided fractionation, we identified the hexane fraction (HRH) as the active fraction, which was further fractionated using preparative HPLC. Among the resulting six fractions, HRHF4 showed significant activity. In the present study, we focused on the bioassay-guided isolation of bioactive compounds from the HRHF4 fraction. We successfully identified the active HRHF43 fraction, which led us to the isolation of potential bioactive compounds (<b>1–6</b>). The chemical structures of these compounds were determined using NMR data, LC-MS analysis, and HR-ESI-MS data as four triterpenes, ursolic acid (<b>1</b>), uvaol (<b>2</b>), oleanolic aldehyde (<b>3</b>), and ursolic aldehyde (<b>4</b>), together with two fatty acids, methyl linoleate (<b>5</b>) and ethyl oleate (<b>6</b>). To evaluate the efficacy of promoting osteoblast differentiation and the expression of mRNA biomarkers related to osteogenesis, we tested the isolated compounds in the mouse mesenchymal stem cell line, C3H10T1/2. Alkaline phosphate staining demonstrated that triterpenes (<b>1–4</b>) displayed osteogenic activity. Particularly noteworthy, ursolic aldehyde (<b>4</b>) exhibited the most potent effect, showing an 11.2-fold higher activity at a concentration of 10 μg/mL compared to the negative control. Moreover, ursolic aldehyde (<b>4</b>) upregulated the gene expression of bone formation-related biomarkers, including Runx2, Osterix, Alp, and Osteopontin. These findings suggest that the fruit extract of <i>H. rhamnoides</i> may have potential as a nutraceutical for promoting bone health, with ursolic aldehyde (<b>4</b>) identified as an active constituent.</p></div>\",\"PeriodicalId\":8287,\"journal\":{\"name\":\"Archives of Pharmacal Research\",\"volume\":\"46 9-10\",\"pages\":\"771 - 781\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Pharmacal Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12272-023-01468-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12272-023-01468-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Anti-osteoporosis effects of triterpenoids from the fruit of sea buckthorn (Hippophae rhamnoides) through the promotion of osteoblast differentiation in mesenchymal stem cells, C3H10T1/2
In a previous study, we discovered that the ethanolic extract of sea buckthorn (Hippophae rhamnoides) fruits exhibited anti-osteoporosis effects both in vitro and in vivo. Through bioassay-guided fractionation, we identified the hexane fraction (HRH) as the active fraction, which was further fractionated using preparative HPLC. Among the resulting six fractions, HRHF4 showed significant activity. In the present study, we focused on the bioassay-guided isolation of bioactive compounds from the HRHF4 fraction. We successfully identified the active HRHF43 fraction, which led us to the isolation of potential bioactive compounds (1–6). The chemical structures of these compounds were determined using NMR data, LC-MS analysis, and HR-ESI-MS data as four triterpenes, ursolic acid (1), uvaol (2), oleanolic aldehyde (3), and ursolic aldehyde (4), together with two fatty acids, methyl linoleate (5) and ethyl oleate (6). To evaluate the efficacy of promoting osteoblast differentiation and the expression of mRNA biomarkers related to osteogenesis, we tested the isolated compounds in the mouse mesenchymal stem cell line, C3H10T1/2. Alkaline phosphate staining demonstrated that triterpenes (1–4) displayed osteogenic activity. Particularly noteworthy, ursolic aldehyde (4) exhibited the most potent effect, showing an 11.2-fold higher activity at a concentration of 10 μg/mL compared to the negative control. Moreover, ursolic aldehyde (4) upregulated the gene expression of bone formation-related biomarkers, including Runx2, Osterix, Alp, and Osteopontin. These findings suggest that the fruit extract of H. rhamnoides may have potential as a nutraceutical for promoting bone health, with ursolic aldehyde (4) identified as an active constituent.
期刊介绍:
Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.