Andrea Estefania Lopez Giraldo, Zowie Werner, Mehdi Rahimi, Woonghee Lee
{"title":"突破界限:TINTO在POKY中用于基于计算机视觉的NMR行走策略。","authors":"Andrea Estefania Lopez Giraldo, Zowie Werner, Mehdi Rahimi, Woonghee Lee","doi":"10.1007/s10858-023-00423-6","DOIUrl":null,"url":null,"abstract":"<div><p>Nuclear magnetic resonance is a crucial technique for studying biological complexes, as it provides precise structural and dynamic information at the atomic level. However, the process of assigning resonances can be time-consuming and challenging, particularly in cases where peaks overlap, or the data quality is poor. In this paper, we present TINTO (Two and three-dimensional Imaging for NMR sTrip Operation via CV/ML), an advanced semiautomatic toolset for NMR resonance assignment. TINTO comprises two separate tools, each tailored for either two-dimensional or three-dimensional imaging. The toolset utilizes a computer-vision approach and a machine learning approach, specifically structural similarity index and principal components analysis, to perform visual similarity searches of resonances and quickly locate similar strips, and in that way overcome the challenges associated with peak overlap without requiring peak picking. Our tool offers a user-friendly interface and has the potential to enhance the efficiency and accuracy of NMR resonance assignment, particularly in complex cases. This advancement holds promising implications for furthering our understanding of biological systems at the molecular level. TINTO is pre-installed in the POKY suite, which is available at https://poky.clas.ucdenver.edu.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Breaking boundaries: TINTO in POKY for computer vision-based NMR walking strategies\",\"authors\":\"Andrea Estefania Lopez Giraldo, Zowie Werner, Mehdi Rahimi, Woonghee Lee\",\"doi\":\"10.1007/s10858-023-00423-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nuclear magnetic resonance is a crucial technique for studying biological complexes, as it provides precise structural and dynamic information at the atomic level. However, the process of assigning resonances can be time-consuming and challenging, particularly in cases where peaks overlap, or the data quality is poor. In this paper, we present TINTO (Two and three-dimensional Imaging for NMR sTrip Operation via CV/ML), an advanced semiautomatic toolset for NMR resonance assignment. TINTO comprises two separate tools, each tailored for either two-dimensional or three-dimensional imaging. The toolset utilizes a computer-vision approach and a machine learning approach, specifically structural similarity index and principal components analysis, to perform visual similarity searches of resonances and quickly locate similar strips, and in that way overcome the challenges associated with peak overlap without requiring peak picking. Our tool offers a user-friendly interface and has the potential to enhance the efficiency and accuracy of NMR resonance assignment, particularly in complex cases. This advancement holds promising implications for furthering our understanding of biological systems at the molecular level. TINTO is pre-installed in the POKY suite, which is available at https://poky.clas.ucdenver.edu.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-023-00423-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-023-00423-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Breaking boundaries: TINTO in POKY for computer vision-based NMR walking strategies
Nuclear magnetic resonance is a crucial technique for studying biological complexes, as it provides precise structural and dynamic information at the atomic level. However, the process of assigning resonances can be time-consuming and challenging, particularly in cases where peaks overlap, or the data quality is poor. In this paper, we present TINTO (Two and three-dimensional Imaging for NMR sTrip Operation via CV/ML), an advanced semiautomatic toolset for NMR resonance assignment. TINTO comprises two separate tools, each tailored for either two-dimensional or three-dimensional imaging. The toolset utilizes a computer-vision approach and a machine learning approach, specifically structural similarity index and principal components analysis, to perform visual similarity searches of resonances and quickly locate similar strips, and in that way overcome the challenges associated with peak overlap without requiring peak picking. Our tool offers a user-friendly interface and has the potential to enhance the efficiency and accuracy of NMR resonance assignment, particularly in complex cases. This advancement holds promising implications for furthering our understanding of biological systems at the molecular level. TINTO is pre-installed in the POKY suite, which is available at https://poky.clas.ucdenver.edu.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.