A. N. Morozov, N. V. Vaganova, Ya. A. Mikhailova, I. V. Starkov
{"title":"欧亚北极地区现代地震震级的统一","authors":"A. N. Morozov, N. V. Vaganova, Ya. A. Mikhailova, I. V. Starkov","doi":"10.3103/S0747923922040077","DOIUrl":null,"url":null,"abstract":"<p>The article presents the results of identifying correlation relationships between magnitudes of different types, calculated in international and regional seismological centers. An increase in the number of seismic stations in the Arctic in the 21st century and corresponding increase in the number of recorded earthquakes (due to a decrease in the threshold recording magnitude) has made it possible to identify quantitative relationships between magnitudes based on large samplings of earthquakes and in a wide range of magnitudes. From International Seismological Center data for 1995–2020, we obtained 30 ratios between magnitudes of different types, calculated at different seismological centers, in particular, magnitudes ranging from <i>m</i><sub><i>b</i></sub> and <i>M</i><sub><i>S</i></sub> 2.6 and <i>M</i><sub><i>L</i></sub> = 0.8. The identified relationships will make it possible to compile an aggregated unified catalog of earthquakes for certain regions of the Arctic, which is necessary, primarily, for assessing the seismic hazard of certain areas, as well as studying low-magnitude earthquakes and clusters and swarms of such quakes.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":"58 4","pages":"389 - 397"},"PeriodicalIF":0.3000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Unification of Magnitudes for Modern Earthquakes in the Eurasian Arctic Region\",\"authors\":\"A. N. Morozov, N. V. Vaganova, Ya. A. Mikhailova, I. V. Starkov\",\"doi\":\"10.3103/S0747923922040077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article presents the results of identifying correlation relationships between magnitudes of different types, calculated in international and regional seismological centers. An increase in the number of seismic stations in the Arctic in the 21st century and corresponding increase in the number of recorded earthquakes (due to a decrease in the threshold recording magnitude) has made it possible to identify quantitative relationships between magnitudes based on large samplings of earthquakes and in a wide range of magnitudes. From International Seismological Center data for 1995–2020, we obtained 30 ratios between magnitudes of different types, calculated at different seismological centers, in particular, magnitudes ranging from <i>m</i><sub><i>b</i></sub> and <i>M</i><sub><i>S</i></sub> 2.6 and <i>M</i><sub><i>L</i></sub> = 0.8. The identified relationships will make it possible to compile an aggregated unified catalog of earthquakes for certain regions of the Arctic, which is necessary, primarily, for assessing the seismic hazard of certain areas, as well as studying low-magnitude earthquakes and clusters and swarms of such quakes.</p>\",\"PeriodicalId\":45174,\"journal\":{\"name\":\"Seismic Instruments\",\"volume\":\"58 4\",\"pages\":\"389 - 397\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seismic Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0747923922040077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismic Instruments","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0747923922040077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Unification of Magnitudes for Modern Earthquakes in the Eurasian Arctic Region
The article presents the results of identifying correlation relationships between magnitudes of different types, calculated in international and regional seismological centers. An increase in the number of seismic stations in the Arctic in the 21st century and corresponding increase in the number of recorded earthquakes (due to a decrease in the threshold recording magnitude) has made it possible to identify quantitative relationships between magnitudes based on large samplings of earthquakes and in a wide range of magnitudes. From International Seismological Center data for 1995–2020, we obtained 30 ratios between magnitudes of different types, calculated at different seismological centers, in particular, magnitudes ranging from mb and MS 2.6 and ML = 0.8. The identified relationships will make it possible to compile an aggregated unified catalog of earthquakes for certain regions of the Arctic, which is necessary, primarily, for assessing the seismic hazard of certain areas, as well as studying low-magnitude earthquakes and clusters and swarms of such quakes.
期刊介绍:
Seismic Instruments is a journal devoted to the description of geophysical instruments used in seismic research. In addition to covering the actual instruments for registering seismic waves, substantial room is devoted to solving instrumental-methodological problems of geophysical monitoring, applying various methods that are used to search for earthquake precursors, to studying earthquake nucleation processes and to monitoring natural and technogenous processes. The description of the construction, working elements, and technical characteristics of the instruments, as well as some results of implementation of the instruments and interpretation of the results are given. Attention is paid to seismic monitoring data and earthquake catalog quality Analysis.