Andrew J Toner, Martin A Bailey, Stephan A Schug, Michael Phillips, Jacobus Pj Ungerer, Andrew A Somogyi, Tomas B Corcoran
{"title":"癌症手术患者围手术期长时间输注期间的血清利多卡因(利多卡因)浓度:一项随机对照试验的二次分析。","authors":"Andrew J Toner, Martin A Bailey, Stephan A Schug, Michael Phillips, Jacobus Pj Ungerer, Andrew A Somogyi, Tomas B Corcoran","doi":"10.1177/0310057X231194833","DOIUrl":null,"url":null,"abstract":"<p><p>Perioperative lidocaine (lignocaine) infusions are being employed with increasing frequency. The determinants of systemic lidocaine concentrations during prolonged administration are unclear. In the Long-term Outcomes after Lidocaine Infusions for PostOperative Pain (LOLIPOP) pilot trial, the impact of infusion duration and body size metrics on serum lidocaine concentrations was examined with regression models in 48 women undergoing breast cancer surgery. Lidocaine was delivered as an intravenous bolus (1.5 mg/kg) and infusion (2 mg/kg per h) intraoperatively, followed by a 12-h subcutaneous infusion (1.33 mg/kg per h) postoperatively. Dosing was based on total body weight. Wound infiltration with other long-acting local anaesthetics was permitted. Protein binding and pharmacogenomic data were also collected. Lidocaine concentrations (median (interquartile range) (range)) during prolonged administration were in the safe and potentially therapeutic range: post-anaesthesia care unit 2.16 (1.73-2.82) (1.12-6.06) µg/ml; ward 1.41 (1.22-1.75) (0.64-2.81) µg/ml. Concentrations increased non-linearly during the early intravenous phase of administration (mean rise 1.21 µg/ml per hour of infusion, <i>P</i> = 0.007) but reached a pseudo steady-state during the later subcutaneous phase. Higher dose rates received per kilogram of lean (<i>P</i> = 0.004), adjusted (<i>P</i> = 0.006) and ideal body weight (<i>P</i> = 0.009) were associated with higher steady-state concentrations. The lidocaine free fraction was unaffected by the presence of ropivacaine, and phenotypes linked to slow metabolism were infrequent. Serum lidocaine concentrations reached a pseudo steady-state during a 12-h postoperative infusion. Greater precision in steady-state concentrations can be achieved by dosing on lean body weight versus adjusted or ideal body weight (equivalent lean body weight doses: intravenous bolus 2.5 mg/kg; intravenous infusion 3.33 mg/kg per h; subcutaneous infusion 2.22 mg/kg per h.</p>","PeriodicalId":7746,"journal":{"name":"Anaesthesia and Intensive Care","volume":" ","pages":"422-431"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Serum lidocaine (lignocaine) concentrations during prolonged perioperative infusion in patients undergoing breast cancer surgery: A secondary analysis of a randomised controlled trial.\",\"authors\":\"Andrew J Toner, Martin A Bailey, Stephan A Schug, Michael Phillips, Jacobus Pj Ungerer, Andrew A Somogyi, Tomas B Corcoran\",\"doi\":\"10.1177/0310057X231194833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perioperative lidocaine (lignocaine) infusions are being employed with increasing frequency. The determinants of systemic lidocaine concentrations during prolonged administration are unclear. In the Long-term Outcomes after Lidocaine Infusions for PostOperative Pain (LOLIPOP) pilot trial, the impact of infusion duration and body size metrics on serum lidocaine concentrations was examined with regression models in 48 women undergoing breast cancer surgery. Lidocaine was delivered as an intravenous bolus (1.5 mg/kg) and infusion (2 mg/kg per h) intraoperatively, followed by a 12-h subcutaneous infusion (1.33 mg/kg per h) postoperatively. Dosing was based on total body weight. Wound infiltration with other long-acting local anaesthetics was permitted. Protein binding and pharmacogenomic data were also collected. Lidocaine concentrations (median (interquartile range) (range)) during prolonged administration were in the safe and potentially therapeutic range: post-anaesthesia care unit 2.16 (1.73-2.82) (1.12-6.06) µg/ml; ward 1.41 (1.22-1.75) (0.64-2.81) µg/ml. Concentrations increased non-linearly during the early intravenous phase of administration (mean rise 1.21 µg/ml per hour of infusion, <i>P</i> = 0.007) but reached a pseudo steady-state during the later subcutaneous phase. Higher dose rates received per kilogram of lean (<i>P</i> = 0.004), adjusted (<i>P</i> = 0.006) and ideal body weight (<i>P</i> = 0.009) were associated with higher steady-state concentrations. The lidocaine free fraction was unaffected by the presence of ropivacaine, and phenotypes linked to slow metabolism were infrequent. Serum lidocaine concentrations reached a pseudo steady-state during a 12-h postoperative infusion. Greater precision in steady-state concentrations can be achieved by dosing on lean body weight versus adjusted or ideal body weight (equivalent lean body weight doses: intravenous bolus 2.5 mg/kg; intravenous infusion 3.33 mg/kg per h; subcutaneous infusion 2.22 mg/kg per h.</p>\",\"PeriodicalId\":7746,\"journal\":{\"name\":\"Anaesthesia and Intensive Care\",\"volume\":\" \",\"pages\":\"422-431\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anaesthesia and Intensive Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0310057X231194833\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anaesthesia and Intensive Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0310057X231194833","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
Serum lidocaine (lignocaine) concentrations during prolonged perioperative infusion in patients undergoing breast cancer surgery: A secondary analysis of a randomised controlled trial.
Perioperative lidocaine (lignocaine) infusions are being employed with increasing frequency. The determinants of systemic lidocaine concentrations during prolonged administration are unclear. In the Long-term Outcomes after Lidocaine Infusions for PostOperative Pain (LOLIPOP) pilot trial, the impact of infusion duration and body size metrics on serum lidocaine concentrations was examined with regression models in 48 women undergoing breast cancer surgery. Lidocaine was delivered as an intravenous bolus (1.5 mg/kg) and infusion (2 mg/kg per h) intraoperatively, followed by a 12-h subcutaneous infusion (1.33 mg/kg per h) postoperatively. Dosing was based on total body weight. Wound infiltration with other long-acting local anaesthetics was permitted. Protein binding and pharmacogenomic data were also collected. Lidocaine concentrations (median (interquartile range) (range)) during prolonged administration were in the safe and potentially therapeutic range: post-anaesthesia care unit 2.16 (1.73-2.82) (1.12-6.06) µg/ml; ward 1.41 (1.22-1.75) (0.64-2.81) µg/ml. Concentrations increased non-linearly during the early intravenous phase of administration (mean rise 1.21 µg/ml per hour of infusion, P = 0.007) but reached a pseudo steady-state during the later subcutaneous phase. Higher dose rates received per kilogram of lean (P = 0.004), adjusted (P = 0.006) and ideal body weight (P = 0.009) were associated with higher steady-state concentrations. The lidocaine free fraction was unaffected by the presence of ropivacaine, and phenotypes linked to slow metabolism were infrequent. Serum lidocaine concentrations reached a pseudo steady-state during a 12-h postoperative infusion. Greater precision in steady-state concentrations can be achieved by dosing on lean body weight versus adjusted or ideal body weight (equivalent lean body weight doses: intravenous bolus 2.5 mg/kg; intravenous infusion 3.33 mg/kg per h; subcutaneous infusion 2.22 mg/kg per h.
期刊介绍:
Anaesthesia and Intensive Care is an international journal publishing timely, peer reviewed articles that have educational value and scientific merit for clinicians and researchers associated with anaesthesia, intensive care medicine, and pain medicine.