FOXC1在成骨细胞中的调节和功能。

IF 2.2 Q3 DEVELOPMENTAL BIOLOGY Journal of Developmental Biology Pub Date : 2023-09-19 DOI:10.3390/jdb11030038
Sarocha Suthon, Jianjian Lin, Rachel S Perkins, Gustavo A Miranda-Carboni, Susan A Krum
{"title":"FOXC1在成骨细胞中的调节和功能。","authors":"Sarocha Suthon,&nbsp;Jianjian Lin,&nbsp;Rachel S Perkins,&nbsp;Gustavo A Miranda-Carboni,&nbsp;Susan A Krum","doi":"10.3390/jdb11030038","DOIUrl":null,"url":null,"abstract":"<p><p>Estrogens, which bind to estrogen receptor alpha (ERα), are important for proper bone mineral density. When women go through menopause, estrogen levels decrease, and there is a decrease in bone quality, along with an increased risk for fractures. We previously identified an enhancer near <i>FOXC1</i> as the most significantly enriched binding site for estrogen receptor alpha (ERα) in osteoblasts. FOXC1 is a transcription factor belonging to a large group of proteins known as forkhead box genes and is an important regulator of bone formation. Here, we demonstrate that 17β-estradiol (E2) increases the mRNA and protein levels of FOXC1 in primary mouse and human osteoblasts. GATA4 is a pioneer factor for ERα and it is also recruited to enhancers near <i>Foxc1</i>. Knockdown of <i>Gata4</i> in mouse osteoblasts in vitro decreases <i>Foxc1</i> expression as does knockout of <i>Gata4</i> in vivo. Functionally, GATA4 and FOXC1 interact and regulate osteoblast proteins such as RUNX2, as demonstrated by ChIP-reChIP and luciferase assays. The most enriched motif in GATA4 binding sites from ChIP-seq is for <i>FOXC1</i>, supporting the notion that GATA4 and FOXC1 cooperate in regulating osteoblast differentiation. Together, these data demonstrate the interactions of the transcription factors ERα, GATA4, and FOXC1 to regulate each other's expression and other osteoblast differentiation genes.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531946/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regulation and Function of FOXC1 in Osteoblasts.\",\"authors\":\"Sarocha Suthon,&nbsp;Jianjian Lin,&nbsp;Rachel S Perkins,&nbsp;Gustavo A Miranda-Carboni,&nbsp;Susan A Krum\",\"doi\":\"10.3390/jdb11030038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estrogens, which bind to estrogen receptor alpha (ERα), are important for proper bone mineral density. When women go through menopause, estrogen levels decrease, and there is a decrease in bone quality, along with an increased risk for fractures. We previously identified an enhancer near <i>FOXC1</i> as the most significantly enriched binding site for estrogen receptor alpha (ERα) in osteoblasts. FOXC1 is a transcription factor belonging to a large group of proteins known as forkhead box genes and is an important regulator of bone formation. Here, we demonstrate that 17β-estradiol (E2) increases the mRNA and protein levels of FOXC1 in primary mouse and human osteoblasts. GATA4 is a pioneer factor for ERα and it is also recruited to enhancers near <i>Foxc1</i>. Knockdown of <i>Gata4</i> in mouse osteoblasts in vitro decreases <i>Foxc1</i> expression as does knockout of <i>Gata4</i> in vivo. Functionally, GATA4 and FOXC1 interact and regulate osteoblast proteins such as RUNX2, as demonstrated by ChIP-reChIP and luciferase assays. The most enriched motif in GATA4 binding sites from ChIP-seq is for <i>FOXC1</i>, supporting the notion that GATA4 and FOXC1 cooperate in regulating osteoblast differentiation. Together, these data demonstrate the interactions of the transcription factors ERα, GATA4, and FOXC1 to regulate each other's expression and other osteoblast differentiation genes.</p>\",\"PeriodicalId\":15563,\"journal\":{\"name\":\"Journal of Developmental Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531946/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jdb11030038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb11030038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

雌激素与雌激素受体α(ERα)结合,对适当的骨密度很重要。当女性进入更年期时,雌激素水平下降,骨骼质量下降,骨折风险增加。我们先前确定FOXC1附近的增强子是成骨细胞中雌激素受体α(ERα)最显著富集的结合位点。FOXC1是一种转录因子,属于一大组被称为叉头盒基因的蛋白质,是骨形成的重要调节因子。在这里,我们证明了17β-雌二醇(E2)增加了原代小鼠和人成骨细胞中FOXC1的mRNA和蛋白质水平。GATA4是ERα的先驱因子,它也被招募到Foxc1附近的增强子中。在体外敲除小鼠成骨细胞中的Gata4降低Foxc1的表达,在体内敲除Gata4也是如此。在功能上,GATA4和FOXC1相互作用并调节成骨细胞蛋白如RUNX2,如ChIP-reChIP和荧光素酶测定所证明的。来自ChIP-seq的GATA4结合位点中最富集的基序是FOXC1,支持GATA4和FOXC1在调节成骨细胞分化中协同作用的观点。总之,这些数据证明了转录因子ERα、GATA4和FOXC1相互作用,以调节彼此的表达和其他成骨细胞分化基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regulation and Function of FOXC1 in Osteoblasts.

Estrogens, which bind to estrogen receptor alpha (ERα), are important for proper bone mineral density. When women go through menopause, estrogen levels decrease, and there is a decrease in bone quality, along with an increased risk for fractures. We previously identified an enhancer near FOXC1 as the most significantly enriched binding site for estrogen receptor alpha (ERα) in osteoblasts. FOXC1 is a transcription factor belonging to a large group of proteins known as forkhead box genes and is an important regulator of bone formation. Here, we demonstrate that 17β-estradiol (E2) increases the mRNA and protein levels of FOXC1 in primary mouse and human osteoblasts. GATA4 is a pioneer factor for ERα and it is also recruited to enhancers near Foxc1. Knockdown of Gata4 in mouse osteoblasts in vitro decreases Foxc1 expression as does knockout of Gata4 in vivo. Functionally, GATA4 and FOXC1 interact and regulate osteoblast proteins such as RUNX2, as demonstrated by ChIP-reChIP and luciferase assays. The most enriched motif in GATA4 binding sites from ChIP-seq is for FOXC1, supporting the notion that GATA4 and FOXC1 cooperate in regulating osteoblast differentiation. Together, these data demonstrate the interactions of the transcription factors ERα, GATA4, and FOXC1 to regulate each other's expression and other osteoblast differentiation genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Developmental Biology
Journal of Developmental Biology Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
4.10
自引率
18.50%
发文量
44
审稿时长
11 weeks
期刊介绍: The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.
期刊最新文献
Myotube Guidance: Shaping up the Musculoskeletal System. Roles of the NR2F Family in the Development, Disease, and Cancer of the Lung. Evolution and Spatiotemporal Expression of ankha and ankhb in Zebrafish. From Germ Cells to Implantation: The Role of Extracellular Vesicles. Lowered GnT-I Activity Decreases Complex-Type N-Glycan Amounts and Results in an Aberrant Primary Motor Neuron Structure in the Spinal Cord.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1