Chen Xue-Meng, Liu Gao-Wang, Ling Xiao-Mei, Zeng Fan-Fang, Xiao Jin-Fang
{"title":"插管下机械通气对呼吸道细菌计数变化和菌群变化的影响。","authors":"Chen Xue-Meng, Liu Gao-Wang, Ling Xiao-Mei, Zeng Fan-Fang, Xiao Jin-Fang","doi":"10.1080/01902148.2023.2264947","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The most common 'second strike' in mechanically ventilated patients is a pulmonary infection caused by the ease with which bacteria can invade and colonize the lungs due to mechanical ventilation. At the same time, metastasis of lower airway microbiota may have significant implications in developing intubation mechanical ventilation lung inflammation. Thus, we establish a rat model of tracheal intubation with mechanical ventilation and explore the effects of mechanical ventilation on lung injury and microbiological changes in rats. To provide a reference for preventing and treating bacterial flora imbalance and pulmonary infection injury caused by mechanical ventilation of tracheal intubation. <b>Methods:</b> Sprague-Dawley rats were randomly divided into Control, Mechanical ventilation under intubation (1, 3, 6 h) groups, and Spontaneously breathing under intubation (1, 3, 6 h). Lung histopathological injury scores were evaluated. 16SrDNA sequencing was performed to explore respiratory microbiota changes, especially, changes of bacterial count and alteration of bacterial flora. <b>Results:</b> Compared to groups C and SV, critical pathological changes in pulmonary lesions occurred in the MV group after 6 h (<i>p</i> < 0.05). The Alpha diversity and Beta diversity of lower respiratory tract microbiota in MV6, SV6, and C groups were statistically significant (<i>p</i> < 0.05). The main dominant bacterial phyla in the respiratory tract of rats were <i>Proteobacteria, Firmicutes, Bacteroidetes, and Cyanobacteria. Acinetobacter radioresistens</i> in group C was significant, <i>Megaonas</i> in group MV6 was significantly increased, and <i>Parvibacter</i> in group SV6 was significantly increased. Anaerobic, biofilm formation, and Gram-negative bacteria-related functional genes were altered during mechanical ventilation with endotracheal intubation. <b>Conclusion:</b> Mechanical ventilation under intubation may cause dysregulation of lower respiratory microbiota in rats.</p>","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":"49 1","pages":"165-177"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of mechanical ventilation under intubation on respiratory tract change of bacterial count and alteration of bacterial flora.\",\"authors\":\"Chen Xue-Meng, Liu Gao-Wang, Ling Xiao-Mei, Zeng Fan-Fang, Xiao Jin-Fang\",\"doi\":\"10.1080/01902148.2023.2264947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> The most common 'second strike' in mechanically ventilated patients is a pulmonary infection caused by the ease with which bacteria can invade and colonize the lungs due to mechanical ventilation. At the same time, metastasis of lower airway microbiota may have significant implications in developing intubation mechanical ventilation lung inflammation. Thus, we establish a rat model of tracheal intubation with mechanical ventilation and explore the effects of mechanical ventilation on lung injury and microbiological changes in rats. To provide a reference for preventing and treating bacterial flora imbalance and pulmonary infection injury caused by mechanical ventilation of tracheal intubation. <b>Methods:</b> Sprague-Dawley rats were randomly divided into Control, Mechanical ventilation under intubation (1, 3, 6 h) groups, and Spontaneously breathing under intubation (1, 3, 6 h). Lung histopathological injury scores were evaluated. 16SrDNA sequencing was performed to explore respiratory microbiota changes, especially, changes of bacterial count and alteration of bacterial flora. <b>Results:</b> Compared to groups C and SV, critical pathological changes in pulmonary lesions occurred in the MV group after 6 h (<i>p</i> < 0.05). The Alpha diversity and Beta diversity of lower respiratory tract microbiota in MV6, SV6, and C groups were statistically significant (<i>p</i> < 0.05). The main dominant bacterial phyla in the respiratory tract of rats were <i>Proteobacteria, Firmicutes, Bacteroidetes, and Cyanobacteria. Acinetobacter radioresistens</i> in group C was significant, <i>Megaonas</i> in group MV6 was significantly increased, and <i>Parvibacter</i> in group SV6 was significantly increased. Anaerobic, biofilm formation, and Gram-negative bacteria-related functional genes were altered during mechanical ventilation with endotracheal intubation. <b>Conclusion:</b> Mechanical ventilation under intubation may cause dysregulation of lower respiratory microbiota in rats.</p>\",\"PeriodicalId\":12206,\"journal\":{\"name\":\"Experimental Lung Research\",\"volume\":\"49 1\",\"pages\":\"165-177\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Lung Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01902148.2023.2264947\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2023.2264947","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
摘要
背景:机械通气患者最常见的“第二次打击”是由细菌因机械通气而容易侵入和定植肺部引起的肺部感染。同时,下呼吸道微生物群的转移可能对插管机械通气肺部炎症的发展具有重要意义。因此,我们建立了机械通气气管插管大鼠模型,并探讨了机械通气对大鼠肺损伤和微生物变化的影响。为预防和治疗气管插管机械通气引起的菌群失衡和肺部感染损伤提供参考。方法:将Sprague-Dawley大鼠随机分为对照组、机械通气组(1、3、6 h) 组,以及插管下的自主呼吸(1、3、6 h) 。评估肺组织病理学损伤评分。16SrDNA测序用于探索呼吸道微生物群的变化,特别是细菌计数的变化和细菌菌群的改变。结果:与C组和SV组相比,MV组在6个月后出现了严重的肺部病变病理变化 h(p p 变形菌门、厚壁菌门、拟杆菌门和蓝藻门。C组的不动杆菌辐射抗性显著,MV6组的Megaonas显著增加,SV6组的Parvibacter显著增加。厌氧、生物膜形成和革兰氏阴性菌相关的功能基因在气管插管机械通气过程中发生了改变。结论:插管机械通气可引起大鼠下呼吸道微生物群失调。
Effect of mechanical ventilation under intubation on respiratory tract change of bacterial count and alteration of bacterial flora.
Background: The most common 'second strike' in mechanically ventilated patients is a pulmonary infection caused by the ease with which bacteria can invade and colonize the lungs due to mechanical ventilation. At the same time, metastasis of lower airway microbiota may have significant implications in developing intubation mechanical ventilation lung inflammation. Thus, we establish a rat model of tracheal intubation with mechanical ventilation and explore the effects of mechanical ventilation on lung injury and microbiological changes in rats. To provide a reference for preventing and treating bacterial flora imbalance and pulmonary infection injury caused by mechanical ventilation of tracheal intubation. Methods: Sprague-Dawley rats were randomly divided into Control, Mechanical ventilation under intubation (1, 3, 6 h) groups, and Spontaneously breathing under intubation (1, 3, 6 h). Lung histopathological injury scores were evaluated. 16SrDNA sequencing was performed to explore respiratory microbiota changes, especially, changes of bacterial count and alteration of bacterial flora. Results: Compared to groups C and SV, critical pathological changes in pulmonary lesions occurred in the MV group after 6 h (p < 0.05). The Alpha diversity and Beta diversity of lower respiratory tract microbiota in MV6, SV6, and C groups were statistically significant (p < 0.05). The main dominant bacterial phyla in the respiratory tract of rats were Proteobacteria, Firmicutes, Bacteroidetes, and Cyanobacteria. Acinetobacter radioresistens in group C was significant, Megaonas in group MV6 was significantly increased, and Parvibacter in group SV6 was significantly increased. Anaerobic, biofilm formation, and Gram-negative bacteria-related functional genes were altered during mechanical ventilation with endotracheal intubation. Conclusion: Mechanical ventilation under intubation may cause dysregulation of lower respiratory microbiota in rats.
期刊介绍:
Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia.
Authors can choose to publish gold open access in this journal.